
1_gestion_ressources_poo.md 2025-06-09

1 / 3

Sujet d'évaluation – Algorithmes

Exercice 1

Écrivez une fonction, persistance , qui prend un paramètre positif num et renvoie sa persistance

multiplicative, qui est le nombre de fois que vous devez multiplier les chiffres de num jusqu'à atteindre un

seul chiffre.

Exemple:
39 --> 3 (car 3*9 = 27, 2*7 = 14, 1*4 = 4 et 4 n'a qu'un seul chiffre)
999 --> 4 (car 9*9*9 = 729, 7*2*9 = 126, 1*2*6 = 12, et enfin 1*2 = 2)
4 --> 0 (car 4 est déjà un nombre à un chiffre)

Exercice 2

La racine numérique est la somme récursive de tous les chiffres dʼun nombre.

Étant donné n , prenons la somme des chiffres de n . Si cette valeur comporte plus d'un chiffre, continuez à

réduire de cette manière jusqu'à ce qu'un nombre à un chiffre soit produit. L'entrée sera un entier non

négatif.

16 --> 1 + 6 = 7
942 --> 9 + 4 + 2 = 15 --> 1 + 5 = 6
132189 --> 1 + 3 + 2 + 1 + 8 + 9 = 24 --> 2 + 4 = 6
493193 --> 4 + 9 + 3 + 1 + 9 + 3 = 29 --> 2 + 9 = 11 --> 1 + 1 = 2

Exercice 3

Construisez une tour en forme de pyramide, sous la forme d'un tableau/liste de chaînes, étant donné un

nombre entier positif d'étages. Une tour est représentée par le caractère "*".

Par exemple, une tour de 3 étages ressemble à ceci :

[
 " * ",
 " *** ",
 "*****"
]

6 etages:

[
" * ",

1_gestion_ressources_poo.md 2025-06-09

2 / 3

" *** ",
" ***** ",
" ******* ",
" ********* ",
"***********"
]

Sujet d'évaluation – Programmation Orientée Objet en
Python

Contexte

Vous êtes sollicité par une DSI pour concevoir un outil de modélisation du cycle de vie des machines et

services dʼun système dʼ information, répartis dans différents datacenters. Ce modèle permettra, à

terme, dʼêtre exploité par une future API de supervision.

L'objectif est de construire un ensemble de classes permettant de :

représenter les serveurs (physiques ou virtuels),

suivre les services qui y sont installés,

structurer les datacenters,

tracer les maintenances effectuées,

gérer les techniciens affectés à ces maintenances.

Objectifs pédagogiques

L'évaluation porte sur :

La capacité à modéliser des objets réels,

Lʼusage correct de lʼhéritage et de la composition,

Lʼutilisation pertinente de méthodes spéciales (__str__, __eq__, __len__, etc.),
La qualité de lʼorganisation du code.

Fonctionnalités attendues

Classe Service

Représente une application déployée sur un serveur.

Attributs : nom, port, protocole, critique (booléen).

Peut être comparé à un autre service (nom + port).

Classe Serveur

Attributs communs : nom, IP, OS, date de mise en service.

Possède une liste de services.

Fournit des méthodes pour ajouter/retirer un service.

1_gestion_ressources_poo.md 2025-06-09

3 / 3

Implémente des méthodes spéciales pertinentes.

Classe ServeurPhysique et ServeurVirtuel

ServeurPhysique : rack, consommation en kW, garantie (booléen).

ServeurVirtuel : hyperviseur, allocation (ex: "4 vCPU / 8 Go RAM").

Classe Technicien

Nom, spécialité (Linux, virtualisation, réseau...), et identifiant.

Peut être affecté à une ou plusieurs maintenances.

Classe Maintenance

Concerne un serveur donné.

Attributs : identifiant, date, type de maintenance (préventive, corrective), technicien responsable.

Peut être liée à un serveur.

Fournit une méthode permettant d'afficher un résumé clair.

Classe Datacenter

Contient une liste de serveurs.

Peut lister tous les services critiques hébergés.

Peut rechercher les serveurs maintenus par un technicien donné.

Peut calculer le nombre total de services hébergés.

Contraintes

Le code doit être structuré et lisible.

Lʼhéritage doit être justifié (pas d'héritage systématique).

La composition doit être utilisée à bon escient.

