1_gestion_ressources_poo.md 2025-06-09

Sujet d'évaluation — Algorithmes

Exercice 1
Ecrivez une fonction, , qui prend un parameétre positif et renvoie sa persistance
multiplicative, qui est le nombre de fois que vous devez multiplier les chiffres de jusqu'a atteindre un
seul chiffre.

Exemple:

39 —> 3 (car 3%9 = 27, 2x7 = 14, 1x4 = 4 et 4 n'a qu'un seul chiffre)
999 ——> 4 (car 9%9%9 = 729, 7%2%9 = 126, 1x2x6 = 12, et enfin 1x2 = 2)
4 ——> @ (car 4 est déja un nombre a un chiffre)

Exercice 2
La racine numérique est la somme récursive de tous les chiffres d'un nombre.

Etant donné n, prenons la somme des chiffres de n . Si cette valeur comporte plus d'un chiffre, continuez a
réduire de cette maniére jusqu'a ce qu'un nombre a un chiffre soit produit. L'entrée sera un entier non

négatif.

16 ——> 1 + 6 = 7

942 —> 9 +4 +2 =15 -—>1+5=206
132189 ——> 1 + 3 + 2 + 1 +8 +9 =24 —> 2 + 4 =6
493193 >4 +9+3 +1+9+3=29 —-—>2+9=11 —-—>1+1=2

Exercice 3

Construisez une tour en forme de pyramide, sous la forme d'un tableau/liste de chaines, étant donné un
nombre entier positif d'étages. Une tour est représentée par le caractére "*".

Par exemple, une tour de 3 étages ressemble a ceci :

(1} * ,
1 *** II’
"ekokoksk!!

6 etages:

1_gestion_ressources_poo.md

" *okok ",
B = = = =
"okkkkkkk M,
" oololololokok !
"ororokokokokokokokok !

]

2025-06-09

Sujet d'évaluation — Programmation Orientée Objet en

Python

Contexte

Vous étes sollicité par une DSI pour concevoir un outil de modélisation du cycle de vie des machines et

services d'un systéme d'information, répartis dans différents datacenters. Ce modéle permettra, a

terme, d'étre exploité par une future API de supervision.

L'objectif est de construire un ensemble de classes permettant de :

e représenter les serveurs (physiques ou virtuels),

e suivre les services qui y sont installés,

e structurer les datacenters,

e tracer les maintenances effectuées,

e gérer les techniciens affectés a ces maintenances.

Objectifs pédagogiques
L'évaluation porte sur :

e La capacité a modéliser des objets réels,

e |'usage correct de I'héritage et de la composition,

e ['utilisation pertinente de méthodes spéciales (,
e La qualité de I'organisation du code.

, etc.),

Fonctionnalités attendues
Classe

e Représente une application déployée sur un serveur.
e Attributs : nom, port, protocole, critique (booléen).
e Peut étre comparé a un autre service (nom + port).

Classe

e Attributs communs : nom, IP, OS, date de mise en service.
e Posséde une liste de services.
e Fournit des méthodes pour ajouter/retirer un service.

2/3

1_gestion_ressources_poo.md 2025-06-09

¢ Implémente des méthodes spéciales pertinentes.

Classe et
. : rack, consommation en kW, garantie (booléen).
. : hyperviseur, allocation (ex: "4 vCPU [8 Go RAM").
Classe

e Nom, spécialité (Linux, virtualisation, réseau...), et identifiant.
e Peut étre affecté a une ou plusieurs maintenances.

Classe

e Concerne un serveur donné.

e Attributs : identifiant, date, type de maintenance (préventive, corrective), technicien responsable.
e Peut étre liée a un serveur.

e Fournit une méthode permettant d'afficher un résumé clair.

Classe

e Contient une liste de serveurs.

e Peut lister tous les services critiques hébergés.

e Peut rechercher les serveurs maintenus par un technicien donné.
e Peut calculer le nombre total de services hébergés.

Contraintes

e Le code doit étre structuré et lisible.
e |'héritage doit étre justifié (pas d'héritage systématique).
e La composition doit étre utilisée a bon escient.

3/3

