04_structures_controles.md 2025-10-07

Structures de contrdle et manipulation de données en
Python

Les structures conditionnelles : if, elif et else

La structure conditionnelle constitue I'un des piliers fondamentaux de la programmation en Python. Elle
permet d'exécuter différents blocs de code en fonction de I'évaluation d'expressions booléennes. La forme
la plus simple est I'instruction 17, qui évalue une condition et exécute le bloc indenté suivant uniquement si
cette condition est vraie.

Considérons un premier exemple illustrant cette structure élémentaire :

temperature =

if temperature >
print("I1 fait trés chaud")

Dans cet exemple, le message ne s'affichera que si la température dépasse strictement 30 degrés.
Lorsque plusieurs alternatives doivent étre envisagées, la clause (contraction de "else if") permet de
tester successivement différentes conditions. Cette structure s'avére particulierement utile lorsque
plusieurs scénarios mutuellement exclusifs doivent étre gérés.

Examinons un exemple plus élaboré intégrant

note =
if note >=

mention = "Trés bien"
elif note >= :

mention = "Bien"
elif note >= :

mention = "Assez bien"
elif note >= -

mention = "Passable"
else:

mention = "Insuffisant"

print(f"Mention obtenue : {mention}")

Il faut noter que Python évalue les conditions dans I'ordre séquentiel d'apparition et s'arréte dés qu'une
condition est satisfaite. Ainsi, dans I'exemple précédent, une note de 14 satisfait la condition

et le programme n'évaluera pas les conditions suivantes. La clause finale capture tous les cas non
traités par les conditions précédentes, jouant le réle d'une option par défaut.

04_structures_controles.md 2025-10-07

Les conditions peuvent également étre combinées a |'aide des opérateurs logiques , et ,
permettant d'exprimer des logiques complexes. Par exemple :

age =
possede_permis =

if age >= and possede_permis:
print("Vous pouvez conduire")
elif age >= and not possede_permis:
print("Vous devez obtenir votre permis")
else:
print("Vous étes trop jeune pour conduire")

Les boucles et la fonction

La boucle en Python représente une structure itérative qui permet de parcourir séquentiellement les
éléments d'un objet itérable. Contrairement a d'autres langages ou la boucle repose sur un compteur
explicite, Python adopte une approche plus élégante basée sur l'itération directe. La fonction se
révele particulierement utile lorsqu'il est nécessaire de générer une séquence numérique pour controler le
nombre d'itérations.

La fonction peut étre invoquée selon trois signatures différentes. La forme la plus simple, ,
géneére une séquence d'entiers de 0 a n-1. Voici une illustration basique :

for i in range(5): # 0 1 2 3 4
print(f"Itération numéro {i}")

Ce code produira les itérations numérotées de O a 4, démontrant que la borne supérieure est exclusive. La
deuxieme forme, , permet de spécifier a la fois la valeur de départ et la valeur finale.
Par exemple :

somme =

for nombre in range(1,): #1 234567 89 10
somme += nombre

print(f"La somme des nombres de 1 a 10 est : {somme}")

La troisieme forme, , introduit un parametre supplémentaire définissant
I'incrément entre chaque valeur. Cette variante s'avéere précieuse pour parcourir des séquences avec un pas
différent de 1, ou méme pour itérer en ordre décroissant avec un pas négatif :

print("Compte a rebours :")

for seconde in range(10, 0,): #1098 7 654321
print(seconde)

print("Décollage !")

2/9

04_structures_controles.md 2025-10-07

Les boucles peuvent également étre imbriquées pour traiter des structures multidimensionnelles.
Considérons la génération d'une table de multiplication :

for 1 in range(1, 6):
for j in range(1, 6):
produit = 1 * j
print(f"{i} x {j} = {produit}")
print() # Ligne vide aprés chaque table

Il est également possible d'utiliser en conjonction avec des listes existantes lorsqu'on souhaite
accéder simultanément aux indices et aux valeurs :

fruits = ["pomme", "banane", "orange", "kiwi"]

for index in range(len(fruits)):
print(f"Le fruit a 1'index {index} est : {fruits[index]}")

Les boucles en Python

La boucle permet d'exécuter un bloc d'instructions tant qu'une condition est vraie. Sa syntaxe
repose sur un principe simple : “tant que la condition est vraie, continue”.

compteur =
while compteur <

print(f"Compteur : {compteur}")
compteur +=

Ici, la boucle commence avec A chaque itération, Python vérifie la condition
. Tant qu'elle est vraie, le bloc s'exécute ; dés qu'elle devient fausse (vaut 5), la boucle s'arréte.

Il faut toujours s’assurer que la condition finira par devenir fausse, sinon la boucle devient infinie :

Exemple de boucle infinie (a éviter)
while
print("Ceci s'affichera sans fin")

Les boucles sont donc particuliérement utiles lorsque on ne connait pas a I'avance le nombre

d'itérations nécessaires. Elles s'appuient sur une condition logique plutét que sur une séquence.

Exemple concret : attendre une saisie correcte d'un utilisateur.

3/9

04_structures_controles.md 2025-10-07

mot_de_passe =
while mot_de_passe != "python":
mot_de_passe = input("Entrez le mot de passe : ")

print('"Mot de passe correct !")

Ici, la boucle se répéte jusqu'a ce que l'utilisateur entre la bonne valeur. Le nombre de tours n'est pas défini :
il dépend du comportement de l'utilisateur.

Quand utiliser ou

La boucle s'utilise lorsqu’on connait a I'avance le nombre d'itérations ou lorsqu’on souhaite
parcourir une séquence (liste, chaine, dictionnaire, etc.).

Exemple :

for i in range(5):
print(i)

Ici, on sait qu'il y aura exactement cing tours.

La boucle , au contraire, s'utilise quand on ne connait pas al'avance le nombre de répétitions, et
qu'on dépend d'une condition de sortie. Elle convient pour :

e attendre un événement ou une saisie utilisateur ;
e vérifier une condition jusqu’a ce gu’elle soit remplie ;
e répéter une opération tant qu’'un état n'est pas atteint.

Situation Boucle recommandée

On connait le nombre d'itérations

On ne connait pas le nombre d'itérations

On parcourt une collection (liste, tuple, dict)

On attend une condition (entrée, changement d’état)

Exemple comparatif

Boucle for : on connait la fin
for i in range(3):
print("Essai numéro", i + 1)

Boucle while : on attend la bonne réponse

reponse =
while reponse.lower() != "oui":
reponse = input("Voulez-vous continuer ? (oui/non) : ")

4/9

04_structures_controles.md 2025-10-07

La premiére s'arréte apres trois passages ; la seconde continue tant que la condition n'est pas satisfaite.

La gestion des interruptions de boucle : , et dans les
boucles

Lorsqu’on écrit une boucle, il est fréquent d'avoir besoin de modifier son déroulement normal. Par
exemple, on peut vouloir quitter la boucle prématurément, passer une itération sans exécuter le reste du
code, ou exécuter un bloc final seulement si la boucle s'est terminée naturellement. Python met a
disposition trois mots-clés dédiés a ce contréle fin du flux d'exécution : , et

1. L'instruction

L'instruction permet de sortirimmédiatement d'une boucle, quelle que soit la condition initiale.
Dés que Python rencontre un , il interrompt la boucle et passe directement a la suite du programme.

Exemple :

while
reponse = input("Entrez un mot (ou 'stop' pour quitter) : ")
if reponse == "stop":
print("Arrét demandé, on quitte la boucle.")
break
print(f"Vous avez écrit : {reponse}")

Ici, la boucle est théoriqguement infinie (), mais le permet d'en sortir lorsque
|'utilisateur saisit le mot stop. C'est une structure trés courante lorsqu’on attend une saisie valide, un signal
d'arrét ou une condition particuliére.

2. L'instruction

L'instruction permet, au contraire, de sauter le reste du bloc courant et de passer
directement a l'itération suivante. Elle est utile lorsqu’on souhaite ignorer certains cas sans interrompre la
boucle entiére.

Exemple :

for nombre in range(1, 6):
if nombre % 2 == 0:
continue
print(f"Nombre impair : {nombre}")

Dans cet exemple, lorsque le nombre est pair, la ligne fait passer immédiatement Python a la

prochaine valeur du , sans exécuter . Résultat : seuls les nombres impairs s'affichent.

On peut s'en servir également dans des traitements ou certaines données doivent étre écartées :

5/9

04_structures_controles.md 2025-10-07

nombres = [12, , 0, , , 71
for n in nombres:
if n <
continue # on ignore les nombres négatifs
print(f"Nombre positif : {n}")

3. Laclause sur une boucle
Moins connue mais trés élégante, Python permet d'associer un bloc a une boucle ou . Le
s'exécute uniquement si la boucle s'est terminée sans qu'un n'ait été rencontré.

Cela permet de distinguer une sortie “naturelle” d'une sortie “interrompue”.

Exemple avec une boucle

for tentative in range(3):

mot = input("Mot de passe : ")
if mot == "python":
print("Accés autorisé.")
break
else:

print("Trop de tentatives, acces refusé.")

Explication :
e Sil'utilisateur entre “python” avant la troisieme tentative, le interrompt la boucle et le bloc
n'est pas exécuté.
e Sjaucune des trois tentatives n'a réussi, la boucle se termine normalement et le bloc est
exécuté.
On peut également utiliser avec une boucle , par exemple pour vérifier une condition jusqu'a un
certain seuil :
n =
while n <
if n == 3:
print("Valeur interdite rencontrée, arrét du programme.')
break
n +=
else:

print("La boucle s’est terminée normalement sans interruption.')

Mot-clé Effet sur la boucle Quand I'utiliser

) o Lorsqu’une condition de sortie est atteinte (ex. mot
Stoppe immédiatement la boucle o]
de passe correct, élément trouveé)

6/9

04_structures_controles.md 2025-10-07

Mot-clé Effet sur la boucle Quand I' utiliser
Ignore le reste du bloc et passe a Lorsqu’on veut sauter certains cas sans arréter la
I'itération suivante boucle
S'exécute uniquement si la boucle Pour distinguer une sortie normale d’'une sortie
s'est terminée sans interrompue

Exemple complet

nombres = [3, 5, 7, 9, ’]

for n in nombres:
ifn%s 2 ==0:
print(f"{n} est pair, on arréte la recherche.")
break
if n < 0:
continue
print(f"{n} est un nombre impair positif.")
else:
print("Aucun nombre pair trouvé dans la liste.")

Ici:
. aurait permis d'ignorer les nombres négatifs (s'il y en avait),
. arréte la boucle dés qu'un nombre pair est trouvé,
e |e ne s'exécute que si aucun n'a eu lieu.

Ce mécanisme rend les boucles Python plus expressives et plus précises : on ne se contente plus de
répéter un bloc d'instructions, on contréle réellement le comportement du programme selon les
événements rencontrés.

Les listes de compréhension

Les listes de compréhension constituent une fonctionnalité distinctive et élégante de Python, permettant de
créer des listes de maniére concise et expressive. Cette construction syntaxique offre une alternative
compacte aux boucles traditionnelles pour générer ou transformer des séquences de données. La syntaxe
générale d'une liste de compréhension s'articule autour de I'expression

Comparons d'abord une approche classique avec une liste de compréhension. Pour créer une liste des
carrés des dix premiers entiers, on pourrait traditionnellement écrire :

carres = []
for i in range(10):
carres.append(i xkx 2)

719

04_structures_controles.md 2025-10-07

Cette méme opération peut étre exprimée de maniére beaucoup plus concise avec une liste de

compréhension :

carres = [1i %% 2 for i in range(10)]

Les listes de compréhension peuvent incorporer des conditions pour filtrer les éléments. La syntaxe devient
alors . Prenons I'exemple suivant qui

extrait uniqguement les nombres pairs d'une séquence :

nombres = range(20)
pairs = [n for n in nombres if n % 2 == 0]
print(pairs) # Affiche [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Il est également possible d'appliquer des transformations conditionnelles sur les éléments. Supposons que
nous souhaitions créer une liste ou les nombres pairs sont multipliés par deux et les nombres impairs par

trois :

transformes = [n x 2 if n % 2 == 0 else n x 3 for n in range(10)]
Notons que dans cette construction, I'expression conditionnelle précede le , ce qui differe de la syntaxe
de filtrage présentée précédemment. Cette distinction syntaxique est fondamentale : lorsque le apparait
aprées le , il s'agit d'un filtre ; lorsqu'il fait partie d'une expression ternaire avant le , il s'agit d'une

transformation conditionnelle.

Retenez:
e Sj tout seul, il se retrouve aprés le et ne fait pas partie d'une expression ternaire.
e Si , alors il se retrouve avant le et fait partie d'une expression ternaire.

Les listes de compréhension peuvent également opérer sur des chaines de caractéres et d'autres
structures itérables. Par exemple, pour extraire les voyelles d'une phrase :

phrase = "Python est un langage extraordinaire"
voyelles = [lettre for lettre in phrase if lettre.lower() in "aeiouy"]
print(''.join(voyelles))

Les listes de compréhension imbriguées permettent de traiter des structures bidimensionnelles. Pour créer
une matrice 3x3 contenant les coordonnées de chaque position :

matrice = [[i, j] for i in range(3) for j in range(3)]

879

04_structures_controles.md 2025-10-07

Cette expression génere une liste plate de paires de coordonnées. Pour obtenir une véritable structure
bidimensionnelle, on peut imbriquer une liste de compréhension dans une autre :

matrice = [[1i * j for j in range(5)] for i in range(5)]

Cette construction crée une table de multiplication sous forme de liste de listes, ou chaque sous-liste
représente une ligne de la table.

Les listes de compréhension offrent non seulement une syntaxe plus concise, mais elles sont également
généralement plus performantes que les boucles traditionnelles avec , car Python optimise leur
exécution en interne. Toutefois, il convient de préserver la lisibilité du code : lorsqu'une liste de
compréhension devient trop complexe, il peut étre préférable de revenir a une boucle explicite pour
maintenir la clarté du programme.

9/9

