
04_structures_controles.md 2025-10-07

1 / 9

Structures de contrôle et manipulation de données en
Python

Les structures conditionnelles : if, elif et else

La structure conditionnelle constitue l'un des piliers fondamentaux de la programmation en Python. Elle

permet d'exécuter différents blocs de code en fonction de l'évaluation d'expressions booléennes. La forme

la plus simple est l'instruction if, qui évalue une condition et exécute le bloc indenté suivant uniquement si

cette condition est vraie.

Considérons un premier exemple illustrant cette structure élémentaire :

temperature = 25

if temperature > 30:
 print("Il fait très chaud")

Dans cet exemple, le message ne s'affichera que si la température dépasse strictement 30 degrés.

Lorsque plusieurs alternatives doivent être envisagées, la clause elif (contraction de "else if") permet de

tester successivement différentes conditions. Cette structure s'avère particulièrement utile lorsque

plusieurs scénarios mutuellement exclusifs doivent être gérés.

Examinons un exemple plus élaboré intégrant elif :

note = 14

if note >= 16:
 mention = "Très bien"
elif note >= 14:
 mention = "Bien"
elif note >= 12:
 mention = "Assez bien"
elif note >= 10:
 mention = "Passable"
else:
 mention = "Insuffisant"

print(f"Mention obtenue : {mention}")

Il faut noter que Python évalue les conditions dans l'ordre séquentiel d'apparition et s'arrête dès qu'une

condition est satisfaite. Ainsi, dans l'exemple précédent, une note de 14 satisfait la condition note >= 14
et le programme n'évaluera pas les conditions suivantes. La clause else finale capture tous les cas non

traités par les conditions précédentes, jouant le rôle d'une option par défaut.

04_structures_controles.md 2025-10-07

2 / 9

Les conditions peuvent également être combinées à l'aide des opérateurs logiques and, or et not,
permettant d'exprimer des logiques complexes. Par exemple :

age = 20
possede_permis = True

if age >= 18 and possede_permis:
 print("Vous pouvez conduire")
elif age >= 18 and not possede_permis:
 print("Vous devez obtenir votre permis")
else:
 print("Vous êtes trop jeune pour conduire")

Les boucles for et la fonction range
La boucle for en Python représente une structure itérative qui permet de parcourir séquentiellement les

éléments d'un objet itérable. Contrairement à d'autres langages où la boucle for repose sur un compteur

explicite, Python adopte une approche plus élégante basée sur l'itération directe. La fonction range se

révèle particulièrement utile lorsqu'il est nécessaire de générer une séquence numérique pour contrôler le

nombre d'itérations.

La fonction range peut être invoquée selon trois signatures différentes. La forme la plus simple, range(n),
génère une séquence d'entiers de 0 à n-1. Voici une illustration basique :

for i in range(5): # 0 1 2 3 4
 print(f"Itération numéro {i}")

Ce code produira les itérations numérotées de 0 à 4, démontrant que la borne supérieure est exclusive. La

deuxième forme, range(debut, fin), permet de spécifier à la fois la valeur de départ et la valeur finale.

Par exemple :

somme = 0
for nombre in range(1, 11): # 1 2 3 4 5 6 7 8 9 10
 somme += nombre
print(f"La somme des nombres de 1 à 10 est : {somme}")

La troisième forme, range(debut, fin, pas), introduit un paramètre supplémentaire définissant

l'incrément entre chaque valeur. Cette variante s'avère précieuse pour parcourir des séquences avec un pas

différent de 1, ou même pour itérer en ordre décroissant avec un pas négatif :

print("Compte à rebours :")
for seconde in range(10, 0, -1): # 10 9 8 7 6 5 4 3 2 1
 print(seconde)
print("Décollage !")

04_structures_controles.md 2025-10-07

3 / 9

Les boucles for peuvent également être imbriquées pour traiter des structures multidimensionnelles.

Considérons la génération d'une table de multiplication :

for i in range(1, 6):
 for j in range(1, 6):
 produit = i * j
 print(f"{i} × {j} = {produit}")
 print() # Ligne vide après chaque table

Il est également possible d'utiliser range en conjonction avec des listes existantes lorsqu'on souhaite

accéder simultanément aux indices et aux valeurs :

fruits = ["pomme", "banane", "orange", "kiwi"]

for index in range(len(fruits)):
 print(f"Le fruit à l'index {index} est : {fruits[index]}")

Les boucles while en Python

La boucle while permet dʼexécuter un bloc dʼinstructions tant quʼune condition est vraie. Sa syntaxe

repose sur un principe simple : “tant que la condition est vraie, continue” .

compteur = 0

while compteur < 5:
 print(f"Compteur : {compteur}")
 compteur += 1

Ici, la boucle commence avec compteur = 0. À chaque itération, Python vérifie la condition compteur <
5. Tant quʼelle est vraie, le bloc sʼexécute ; dès quʼelle devient fausse (compteur vaut 5), la boucle sʼarrête.

Il faut toujours sʼassurer que la condition finira par devenir fausse, sinon la boucle devient infinie :

Exemple de boucle infinie (à éviter)
while True:
 print("Ceci s'affichera sans fin")

Les boucles while sont donc particulièrement utiles lorsque on ne connaît pas à lʼavance le nombre

dʼ itérations nécessaires. Elles sʼappuient sur une condition logique plutôt que sur une séquence.

Exemple concret : attendre une saisie correcte dʼun utilisateur.

04_structures_controles.md 2025-10-07

4 / 9

mot_de_passe = ""
while mot_de_passe != "python":
 mot_de_passe = input("Entrez le mot de passe : ")

print("Mot de passe correct !")

Ici, la boucle se répète jusquʼà ce que lʼutilisateur entre la bonne valeur. Le nombre de tours nʼest pas défini :

il dépend du comportement de lʼutilisateur.

Quand utiliser for ou while

La boucle for sʼutilise lorsquʼon connaît à lʼavance le nombre dʼ itérations ou lorsquʼon souhaite

parcourir une séquence (liste, chaîne, dictionnaire, etc.).

Exemple :

for i in range(5):
 print(i)

Ici, on sait quʼil y aura exactement cinq tours.

La boucle while, au contraire, sʼutilise quand on ne connaît pas à lʼavance le nombre de répétitions, et

quʼon dépend dʼune condition de sortie. Elle convient pour :

attendre un événement ou une saisie utilisateur ;

vérifier une condition jusquʼà ce quʼelle soit remplie ;

répéter une opération tant quʼun état nʼest pas atteint.

Situation Boucle recommandée

On connaît le nombre dʼitérations for

On ne connaît pas le nombre dʼitérations while

On parcourt une collection (liste, tuple, dict) for

On attend une condition (entrée, changement dʼétat) while

Exemple comparatif

Boucle for : on connaît la fin
for i in range(3):
 print("Essai numéro", i + 1)

Boucle while : on attend la bonne réponse
reponse = ""
while reponse.lower() != "oui":
 reponse = input("Voulez-vous continuer ? (oui/non) : ")

04_structures_controles.md 2025-10-07

5 / 9

La première sʼarrête après trois passages ; la seconde continue tant que la condition nʼest pas satisfaite.

La gestion des interruptions de boucle : break, continue et else dans les
boucles

Lorsquʼon écrit une boucle, il est fréquent dʼavoir besoin de modifier son déroulement normal. Par

exemple, on peut vouloir quitter la boucle prématurément, passer une itération sans exécuter le reste du

code, ou exécuter un bloc final seulement si la boucle sʼest terminée naturellement. Python met à

disposition trois mots-clés dédiés à ce contrôle fin du flux dʼexécution : break, continue et else.

1. Lʼ instruction break

Lʼinstruction break permet de sortir immédiatement dʼune boucle, quelle que soit la condition initiale.

Dès que Python rencontre un break, il interrompt la boucle et passe directement à la suite du programme.

Exemple :

while True:
 reponse = input("Entrez un mot (ou 'stop' pour quitter) : ")
 if reponse == "stop":
 print("Arrêt demandé, on quitte la boucle.")
 break
 print(f"Vous avez écrit : {reponse}")

Ici, la boucle while est théoriquement infinie (while True:), mais le break permet dʼen sortir lorsque

lʼutilisateur saisit le mot stop. Cʼest une structure très courante lorsquʼon attend une saisie valide, un signal

dʼarrêt ou une condition particulière.

2. Lʼ instruction continue

Lʼinstruction continue permet, au contraire, de sauter le reste du bloc courant et de passer

directement à lʼ itération suivante. Elle est utile lorsquʼon souhaite ignorer certains cas sans interrompre la

boucle entière.

Exemple :

for nombre in range(1, 6):
 if nombre % 2 == 0:
 continue # ignore les nombres pairs
 print(f"Nombre impair : {nombre}")

Dans cet exemple, lorsque le nombre est pair, la ligne continue fait passer immédiatement Python à la

prochaine valeur du for, sans exécuter print(). Résultat : seuls les nombres impairs sʼaffichent.

On peut sʼen servir également dans des traitements où certaines données doivent être écartées :

04_structures_controles.md 2025-10-07

6 / 9

nombres = [12, -4, 0, 15, -9, 7]
for n in nombres:
 if n < 0:
 continue # on ignore les nombres négatifs
 print(f"Nombre positif : {n}")

3. La clause else sur une boucle

Moins connue mais très élégante, Python permet dʼassocier un bloc else à une boucle for ou while. Le
else sʼexécute uniquement si la boucle sʼest terminée sans quʼun break nʼait été rencontré.

Cela permet de distinguer une sortie “naturelle” dʼune sortie “ interrompue”.

Exemple avec une boucle for :

for tentative in range(3):
 mot = input("Mot de passe : ")
 if mot == "python":
 print("Accès autorisé.")
 break
else:
 print("Trop de tentatives, accès refusé.")

Explication :

Si lʼutilisateur entre “python” avant la troisième tentative, le break interrompt la boucle et le bloc

else nʼest pas exécuté.

Si aucune des trois tentatives nʼa réussi, la boucle se termine normalement et le bloc else est

exécuté.

On peut également utiliser else avec une boucle while, par exemple pour vérifier une condition jusquʼà un

certain seuil :

n = 0
while n < 5:
 if n == 3:
 print("Valeur interdite rencontrée, arrêt du programme.")
 break
 n += 1
else:
 print("La boucle s’est terminée normalement sans interruption.")

Mot-clé Effet sur la boucle Quand lʼutiliser

break Stoppe immédiatement la boucle
Lorsquʼune condition de sortie est atteinte (ex. mot

de passe correct, élément trouvé)

04_structures_controles.md 2025-10-07

7 / 9

Mot-clé Effet sur la boucle Quand lʼutiliser

continue
Ignore le reste du bloc et passe à

lʼitération suivante

Lorsquʼon veut sauter certains cas sans arrêter la

boucle

else
Sʼexécute uniquement si la boucle

sʼest terminée sans break
Pour distinguer une sortie normale dʼune sortie

interrompue

Exemple complet

nombres = [3, 5, 7, 9, 10, 13]

for n in nombres:
 if n % 2 == 0:
 print(f"{n} est pair, on arrête la recherche.")
 break
 if n < 0:
 continue
 print(f"{n} est un nombre impair positif.")
else:
 print("Aucun nombre pair trouvé dans la liste.")

Ici :

continue aurait permis dʼignorer les nombres négatifs (sʼil y en avait),

break arrête la boucle dès quʼun nombre pair est trouvé,

le else ne sʼexécute que si aucun break nʼa eu lieu.

Ce mécanisme rend les boucles Python plus expressives et plus précises : on ne se contente plus de

répéter un bloc dʼinstructions, on contrôle réellement le comportement du programme selon les

événements rencontrés.

Les listes de compréhension

Les listes de compréhension constituent une fonctionnalité distinctive et élégante de Python, permettant de

créer des listes de manière concise et expressive. Cette construction syntaxique offre une alternative

compacte aux boucles traditionnelles pour générer ou transformer des séquences de données. La syntaxe

générale d'une liste de compréhension s'articule autour de l'expression [expression for element in
iterable].

Comparons d'abord une approche classique avec une liste de compréhension. Pour créer une liste des

carrés des dix premiers entiers, on pourrait traditionnellement écrire :

carres = []
for i in range(10):
 carres.append(i ** 2)

04_structures_controles.md 2025-10-07

8 / 9

Cette même opération peut être exprimée de manière beaucoup plus concise avec une liste de

compréhension :

carres = [i ** 2 for i in range(10)]

Les listes de compréhension peuvent incorporer des conditions pour filtrer les éléments. La syntaxe devient

alors [expression for element in iterable if condition]. Prenons l'exemple suivant qui

extrait uniquement les nombres pairs d'une séquence :

nombres = range(20)
pairs = [n for n in nombres if n % 2 == 0]
print(pairs) # Affiche [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Il est également possible d'appliquer des transformations conditionnelles sur les éléments. Supposons que

nous souhaitions créer une liste où les nombres pairs sont multipliés par deux et les nombres impairs par

trois :

transformes = [n * 2 if n % 2 == 0 else n * 3 for n in range(10)]

Notons que dans cette construction, l'expression conditionnelle précède le for, ce qui diffère de la syntaxe

de filtrage présentée précédemment. Cette distinction syntaxique est fondamentale : lorsque le if apparaît

après le for, il s'agit d'un filtre ; lorsqu'il fait partie d'une expression ternaire avant le for, il s'agit d'une
transformation conditionnelle.

Retenez:

Si if tout seul, il se retrouve après le for et ne fait pas partie d'une expression ternaire.

Si if/else, alors il se retrouve avant le for et fait partie d'une expression ternaire.

Les listes de compréhension peuvent également opérer sur des chaînes de caractères et d'autres

structures itérables. Par exemple, pour extraire les voyelles d'une phrase :

phrase = "Python est un langage extraordinaire"
voyelles = [lettre for lettre in phrase if lettre.lower() in "aeiouy"]
print(''.join(voyelles))

Les listes de compréhension imbriquées permettent de traiter des structures bidimensionnelles. Pour créer

une matrice 3×3 contenant les coordonnées de chaque position :

matrice = [[i, j] for i in range(3) for j in range(3)]

04_structures_controles.md 2025-10-07

9 / 9

Cette expression génère une liste plate de paires de coordonnées. Pour obtenir une véritable structure

bidimensionnelle, on peut imbriquer une liste de compréhension dans une autre :

matrice = [[i * j for j in range(5)] for i in range(5)]

Cette construction crée une table de multiplication sous forme de liste de listes, où chaque sous-liste

représente une ligne de la table.

Les listes de compréhension offrent non seulement une syntaxe plus concise, mais elles sont également

généralement plus performantes que les boucles for traditionnelles avec append, car Python optimise leur

exécution en interne. Toutefois, il convient de préserver la lisibilité du code : lorsqu'une liste de

compréhension devient trop complexe, il peut être préférable de revenir à une boucle explicite pour

maintenir la clarté du programme.

