
05_les_fonctions.md 2025-10-07

1 / 21

Les fonctions en Python

Introduction

Dans tout langage de programmation, les fonctions constituent une brique essentielle pour structurer,

organiser et réutiliser le code. En Python, une fonction est un bloc dʼinstructions nommé qui permet

dʼexécuter une tâche précise lorsque celle-ci est appelée. On la définit à lʼaide du mot-clé def, suivi du nom

de la fonction, dʼune liste éventuelle de paramètres entre parenthèses et dʼun bloc dʼinstructions indenté.

Lorsquʼune fonction accomplit son travail, elle peut renvoyer un résultat à lʼaide du mot-clé return.

Lʼintérêt majeur des fonctions réside dans la décomposition dʼun programme en sous-problèmes cohérents

et indépendants. On peut ainsi isoler des calculs, éviter la répétition du code, et faciliter les tests ou la

maintenance. Une bonne pratique consiste à donner aux fonctions des noms explicites et à documenter

leur comportement à lʼaide dʼune docstring.

Python introduit également la notion de portée des variables, cʼest-à-dire la zone du programme où une

variable est accessible. Les variables définies à lʼintérieur dʼune fonction sont locales et disparaissent à la

fin de son exécution, tandis que celles définies à lʼextérieur ont une portée globale. Cette distinction garantit

lʼisolation des fonctions et prévient les effets de bord indésirables.

Les fonctions peuvent recevoir un nombre variable de paramètres, utiliser des valeurs par défaut ou des

arguments nommés, ce qui leur confère une grande flexibilité. Il est aussi possible de créer des fonctions

anonymes, dites lambda, pour des opérations simples et ponctuelles. Grâce à cette richesse syntaxique et

conceptuelle, Python permet dʼadopter un style de programmation clair, modulaire et expressif, où chaque

fonction joue le rôle dʼun outil bien défini au service de la lisibilité et de la robustesse du programme.

Exemples de fonctions

Il y a deux types de fonctions de manière générale, les procédures et les fonctions. Même si les deux se

construisent de la même façon, ils ont des différences importantes.

Une procédure est une fonction qui ne renvoie pas de résultat.

def dire_bonjour(nom):
 print("Bonjour " + nom)

dire_bonjour("Jean") # Bonjour Jean

La fonction dire_bonjour est une procédure qui renvoie None et ne fait rien dʼautre que afficher le

message « Bonjour » suivi du nom donné en argument.

On le sait, en survolant la fonction, on peut voir -> None qui indique que la fonction ne renvoie pas de

résultat.

05_les_fonctions.md 2025-10-07

2 / 21

Une fonction, au contraire, renvoie (return) un résultat.

def somme(a, b):
 return a + b

resultat = somme(2, 3)
print(resultat) # 5

Donc si elle retourne un résultat, il faut donc stocker le retour dans une variable.

La fonction somme est une fonction qui renvoie le résultat de lʼaddition de ses deux arguments.

Litéralement, elle retourne le résultat de a + b.

Les développeurs n'aiment pas trop les procédures, car elles ne retournent rien. De ce fait, on ne sait pas

trop si elles ont bien fonctionné.

Lorsquʼon écrit une fonction, on cherche avant tout à produire un résultat, cʼest-à-dire une valeur

exploitable par le reste du programme. Une fonction qui retourne une valeur, même simple comme un

booléen True ou False, est donc toujours plus utile quʼune procédure qui ne renvoie rien.

def creates_folder(folder_name):
 os.mkdir(folder_name)
 return True

if creates_folder("my_folder"):
 print("Folder created")

Cette fonction nous permet ainsi de créer un dossier et de s'assurer que la création a réussi.

En Python, une fonction qui ne comporte pas dʼinstruction return renvoie implicitement None. Ce type de

comportement limite souvent les possibilités de test, de réutilisation et de composition du code. À lʼinverse,

une fonction qui renvoie une valeur permet de chaîner les appels, de vérifier facilement son comportement

dans des tests unitaires, et de prendre des décisions à partir de son résultat.

Paramètres et arguments

05_les_fonctions.md 2025-10-07

3 / 21

Remettons les termes à leur place. Dans la fonction somme, on a deux paramètres, a et b. Lorsque on

appelle cette fonction, on lui fournit deux arguments, 2 et 3.

Ces arguments peuvent être transmis de deux manières différentes : par position ou par nom. Comprendre

cette distinction est fondamental, car elle influence la façon dont les valeurs sont associées aux paramètres

de la fonction.

Un positional argument (argument positionnel) est un argument dont la valeur est associée à un

paramètre selon lʼordre dans lequel il apparaît dans lʼappel de la fonction. Cela signifie que la première

valeur transmise correspond au premier paramètre, la deuxième valeur au deuxième paramètre, et ainsi de

suite. Ce mode est le plus direct, mais il exige de respecter strictement lʼordre défini dans la signature de la

fonction. Par exemple :

def afficher_message(nom, message):
 print(nom + " dit : " + message)

afficher_message("Alice", "Bonjour !")

Ici, "Alice" est associé à nom, et "Bonjour !" à message simplement par leur position respective.

Un naming argument (ou argument nommé) est un argument dont la valeur est associée explicitement à

un paramètre par son nom. Ce mode dʼappel rend le code plus lisible et plus souple, car lʼordre des

arguments nʼa plus dʼimportance. On précise directement à quel paramètre on souhaite affecter une valeur :

afficher_message(message="Salut !", nom="Bob")

Même si les arguments ne sont pas dans le même ordre que dans la définition de la fonction, Python sait

que message reçoit "Salut !" et que nom reçoit "Bob".

L'équipe de Python préconise d'ailleurs d'utiliser le Naming Argument

Les arguments nommés sont donc particulièrement utiles lorsque la fonction comporte de nombreux

paramètres ou lorsque certains ont des valeurs par défaut. Ils rendent les appels plus explicites et évitent

les erreurs dʼordre, tout en améliorant la compréhension du code.

En Python, les f-strings (pour formatted strings) sont une manière moderne et efficace dʼinsérer des

valeurs de variables directement à lʼintérieur dʼune chaîne de caractères. Au lieu de :

print(nom + " dit : " + message)

on peut écrire :

print(f"{nom} dit : {message}")

05_les_fonctions.md 2025-10-07

4 / 21

Une f-string se reconnaît grâce à la lettre f placée juste avant les guillemets ouvrants de la chaîne.

Les f-strings permettent également dʼévaluer directement des expressions, ce qui les rend très

puissantes. Par exemple, on peut écrire :

print(f"Le nombre de lettres du message est : {len(message)}")

Cela permet de calculer la longueur dʼune chaîne de caractères à la volée.

Les opérateurs * et / dans les fonctions

Lorsquʼon définit une fonction en Python, on peut rencontrer une syntaxe qui surprend au début :

def ma_fonction(a, b, *, c, d):
 ...

Le symbole * placé ici sert à imposer une règle de clarté : tous les paramètres écrits après cette étoile

doivent obligatoirement être passés par nom (Naming Argument) lors de lʼappel de la fonction.

Autrement dit, a et b peuvent être donnés dans lʼordre (Positional Argument), mais c et d doivent être

indiqués avec leur nom pour que Python sache clairement à quoi chaque valeur correspond.

Regardons un exemple :

def ma_fonction(a, b, *, c, d):
 print(a, b, c, d)

Voici un appel correct :

ma_fonction(1, 2, c=3, d=4)

Et voici un appel qui provoque une erreur :

ma_fonction(1, 2, 3, 4)
TypeError: ma_fonction() takes 2 positional arguments but 4 were given

Pourquoi cette contrainte ? Parce quʼelle force la lisibilité. Lorsquʼune fonction commence à avoir

beaucoup de paramètres, il devient facile de se tromper dans lʼordre. Grâce à cette étoile, Python oblige à

nommer explicitement certains arguments, ce qui rend le code beaucoup plus clair :

def creer_utilisateur(nom, prenom, *, age, ville):
 print(f"{prenom} {nom}, {age} ans, habite à {ville}")

05_les_fonctions.md 2025-10-07

5 / 21

creer_utilisateur("Durand", "Alice", age=25, ville="Paris")

Ici, personne ne peut confondre ce que représente chaque valeur : le code est auto-explicite.

En résumé, cette étoile * agit comme une barrière logique : tout ce qui est avant peut être passé par

position, et tout ce qui est après doit être passé par nom. Cʼest une manière élégante pour Python

dʼencourager les bonnes pratiques de lisibilité et dʼéviter les erreurs dʼordre dans les appels de fonction.

En Python, le symbole / dans la définition des paramètres dʼune fonction joue un rôle opposé à celui de

lʼastérisque *. Là où * impose que les paramètres qui le suivent soient passés par nom, le / impose au

contraire que les paramètres qui le précèdent soient passés par position uniquement.

On appelle ce symbole lʼopérateur de séparation des arguments positionnels (positional-only argument

separator).

Prenons un exemple simple :

def afficher_coordonnees(x, y, /):
 print(f"Position : x = {x}, y = {y}")

Ici, le / signifie que x et y sont des arguments positionnels seulement. Cela veut dire que lors de lʼappel

de la fonction, on ne peut pas écrire leurs noms :

afficher_coordonnees(10, 20) # ✅ Correct
afficher_coordonnees(x=10, y=20) # ❌ Erreur : arguments positionnels
seulement

Cette restriction est utile dans plusieurs situations. Dʼabord, elle empêche quʼon sʼappuie sur des noms de

paramètres qui pourraient changer à lʼavenir. Par exemple, les fonctions intégrées comme len() ou pow()
utilisent souvent ce mécanisme pour garantir la compatibilité du code même si les développeurs internes de

Python modifient un jour leurs noms de paramètres. Ensuite, elle permet dʼécrire des fonctions dont les

arguments sont purement conceptuels ou anonymes, où lʼordre seul a un sens logique (comme des

coordonnées, des valeurs mathématiques, ou des comparaisons).

On peut aussi combiner / et * dans la même signature pour définir précisément quels paramètres doivent

être donnés par position, lesquels peuvent être donnés librement, et lesquels doivent être nommés. Par

exemple :

def exemple(a, b, /, *, c, d):
 print(a, b, c, d)

exemple(1, 2, c=3, d=4) # ✅

05_les_fonctions.md 2025-10-07

6 / 21

Dans cet exemple :

a et b doivent être donnés par position,

c et d doivent être donnés par nom.

Ainsi, lʼopérateur / est une manière de contrôler la façon dont les arguments doivent être passés à une

fonction, renforçant la cohérence et la lisibilité du code.

Si on parle maintenant de ces deux symboles , / et * , cʼest parce que vous allez commencer à les croiser

en survolant les signatures de fonctions et de méthodes dans votre éditeur. Vous savez déjà comment lire

ces infobulles et décrypter les paramètres quʼelles affichent, donc lʼobjectif ici est simplement de vous

permettre de comprendre ce que signifient ces signes particuliers lorsquʼils apparaissent.

Par exemple, si vous voyez une fonction affichée comme :

len(obj, /)

cela veut dire que obj doit être passé par position uniquement.

Vous ne pourrez pas écrire :

len(obj="Jean") # ❌ Erreur
len("Jean") # ✅ Correct

car obj doit être passé par position.

En connaissant cette règle, vous saurez immédiatement comment appeler correctement la fonction sans

provoquer dʼerreur, et surtout, vous comprendrez la logique de conception qui se cache derrière. Lʼidée

nʼest pas de les mémoriser maintenant, mais de reconnaître leur rôle quand vous les verrez. Vous saurez

qu'à gauche d'un / se trouve un argument positionnel seulement, et à droite d'un * se trouve un argument

nommé.

Les mots clés pass et Elipsis ...
Le mot-clé pass en Python est une instruction particulière qui ne fait absolument rien lorsquʼelle est

exécutée. Cela peut sembler étrange au premier abord, mais cette instruction a une utilité bien précise : elle

permet de laisser un bloc de code vide sans provoquer dʼerreur de syntaxe.

Dans le contexte dʼune fonction, pass est souvent utilisé comme bouchon temporaire. Lorsque lʼon définit

la structure dʼune fonction, mais quʼon ne veut pas encore écrire son contenu, Python exige quʼil y ait au

moins une instruction à lʼintérieur du bloc. Sans cela, lʼinterpréteur lèverait une erreur. Cʼest dans cette

situation que pass entre en jeu.

Exemple :

def calculer_total():
 pass

05_les_fonctions.md 2025-10-07

7 / 21

Ici, la fonction calculer_total() ne fait rien, mais elle est syntaxiquement valide. On peut donc déjà

lʼappeler, la documenter, lʼintégrer à une classe ou à un module, et y revenir plus tard pour en écrire le

contenu.

Cʼest une pratique très utilisée lorsquʼon construit lʼarchitecture dʼun programme avant dʼen implémenter les

détails. Cela permet de préparer la structure du code, dʼécrire les signatures des fonctions et de tester

lʼenchaînement global, sans bloquer la progression du projet.

On rencontre aussi pass dans dʼautres contextes : pour laisser vide une classe, une condition if, ou une

boucle, lorsquʼon veut réserver la place du code à venir.

Ainsi, dans une fonction, pass sert de placeholder, un mot-clé dʼattente qui permet de garder un code

propre et fonctionnel, tout en indiquant clairement quʼil reste une partie à compléter plus tard.

Lʼinstruction pass et lʼobjet spécial ... (appelé ellipsis) peuvent sembler similaires, car tous deux

permettent de laisser un bloc de code vide sans provoquer dʼerreur. Pourtant, ils nʼont ni la même nature,

ni le même usage.

Lʼellipse ... nʼest pas une instruction : cʼest un objet Python de type EllipsisType. On peut lʼutiliser

partout où une expression est attendue, comme une valeur symbolique ou un marqueur de code non

implémenté. Elle est donc davantage sémantique que syntaxique : elle exprime une intention, un “à venir ”

dans le code.

Exemple :

def calculer_total():
 ...

Ici, Python ne fait pas appel à une instruction, mais évalue simplement lʼobjet Ellipsis, ce qui est autorisé

car cʼest une expression valide. Dans la pratique, cela revient à avoir une fonction vide, mais lʼidée est

différente : ... indique que le corps est volontairement incomplet , une sorte de promesse implicite que

la fonction sera complétée plus tard.

On rencontre souvent ... dans des classes abstraites, des squelettes de modules ou des stubs destinés à

lʼauto-complétion ou à la documentation. Par exemple :

class Repository:
 def save(self, entity): ...
 def delete(self, id): ...

Nous y reviendrons plus tard.

En résumé :

pass est une instruction qui “ne fait rien” mais rend le bloc exécutable.

05_les_fonctions.md 2025-10-07

8 / 21

... est un objet qui exprime “non implémenté” et peut être utilisé comme un marqueur plus

conceptuel, notamment dans les architectures ou les interfaces.

Dans un code pédagogique ou en développement progressif, pass est plus courant. ... devient

intéressant lorsquʼon veut signaler une intention, une structure en attente ou un comportement abstrait.

La portée d'une variable et le principe LEGB

La portée dʼune variable (ou variable scope) désigne lʼendroit du programme où cette variable est

connue, visible et accessible. En Python, toutes les variables ne vivent pas dans le même espace :

certaines existent uniquement à lʼintérieur dʼune fonction, dʼautres sont accessibles partout dans le fichier.

Comprendre cette différence est essentiel pour éviter des erreurs ou des comportements inattendus.

Commençons par un exemple simple :

x = 10 # variable définie à l’extérieur d’une fonction

def afficher():
 y = 5 # variable définie à l’intérieur d’une fonction
 print("x =", x)
 print("y =", y)

afficher()
print("x à l’extérieur =", x)
print("y à l’extérieur =", y) # Erreur !

Ici, x est définie à lʼextérieur de la fonction : on dit quʼelle a une portée globale. Elle est accessible

partout dans le programme, y compris à lʼintérieur de la fonction.

En revanche, y est définie à lʼ intérieur de la fonction afficher(). Elle nʼexiste que le temps de

lʼexécution de cette fonction, et on ne peut pas lʼutiliser ailleurs. Lorsquʼon essaie dʼafficher y à la fin,

Python déclenche une erreur :

NameError: name 'y' is not defined

Cela illustre une règle simple :

une variable définie dans une fonction est locale à cette fonction,

une variable définie en dehors de toute fonction est globale dans le module.

Python applique cette logique à travers ce quʼon appelle le modèle LEGB (Local, Enclosing, Global, Built-in),

qui correspond à lʼordre dans lequel lʼinterpréteur cherche une variable :

�. Local : dans la fonction en cours.

�. Enclosing : dans une fonction englobante (si on est dans une fonction à lʼintérieur dʼune autre).

�. Global : dans le fichier courant (en dehors des fonctions).

�. Built-in : dans les noms prédéfinis de Python (comme len, print, etc.).

05_les_fonctions.md 2025-10-07

9 / 21

Regardons un exemple plus visuel :

x = "globale"

def exterieure():
 x = "enclosing" # variable de la fonction englobante

 def interieure():
 x = "locale"
 print(x)

 interieure() # On execute la fonction 'interieur'
 print(x)

exterieure() # On execute la fonction 'exterieure'
print(x)

Résultat :

locale
enclosing
globale

Python commence toujours par chercher la variable dans la portée la plus proche, puis remonte

progressivement.

Enfin, on peut modifier une variable globale à lʼintérieur dʼune fonction, mais uniquement si on la déclare

explicitement avec le mot-clé global :

compteur = 0

def incrementer():
 global compteur
 compteur += 1

Sans ce mot-clé, Python considérerait compteur comme une nouvelle variable locale et lèverait une erreur.

Avec le mot clé "global", on lui dit en somme "Cherche une variable à l'extérieur de ton scope qui porte le

nom de 'compteur'".

En résumé :

Les variables locales existent à lʼintérieur dʼune fonction.

Les variables globales existent dans tout le programme.

Python choisit toujours la version la plus proche selon la règle LEGB.

05_les_fonctions.md 2025-10-07

10 / 21

Comprendre cette portée, cʼest apprendre à contrôler la durée de vie et la visibilité des données quʼon

manipule, et donc à écrire un code plus propre, plus prévisible et plus sûr.

Les Docstrings

Les docstrings (ou documentation strings) sont un élément fondamental du style de programmation en

Python. Ce sont des chaînes de caractères placées juste après la définition dʼune fonction, dʼune classe

ou dʼun module, et elles servent à documenter le code directement à lʼintérieur du programme.

Une docstring permet dʼexpliquer ce que fait une fonction, à quoi servent ses paramètres, et ce quʼelle

renvoie. Elle est accessible depuis le code lui-même, grâce à lʼattribut spécial __doc__, ou via la fonction

help().

Voici un exemple simple :

def saluer(nom):
 """
 Affiche un message de salutation personnalisé.

 Paramètres :
 nom : le prénom de la personne à saluer.

 Retour :
 None
 """
 print(f"Bonjour {nom} !")

Ici, la chaîne placée entre triple guillemets """ ... """ constitue la docstring de la fonction. Python la

reconnaît automatiquement, sans quʼil soit nécessaire de lʼaffecter à une variable.

On peut ensuite y accéder directement :

print(saluer.__doc__)

ou bien afficher une aide plus lisible :

help(saluer)

Lʼintérêt principal des docstrings est de rendre le code compréhensible sans quitter le fichier source.

Elles servent de documentation intégrée, utile aussi bien pour les autres développeurs que pour soi-même

quelques semaines plus tard.

Il est dʼusage dʼy préciser :

le rôle général de la fonction ou de la classe,

les paramètres dʼentrée (avec leur type attendu),

05_les_fonctions.md 2025-10-07

11 / 21

la valeur de retour,

et parfois les exceptions possibles.

Dans les projets professionnels ou pédagogiques, les docstrings suivent souvent un format reconnu comme

PEP 257, ou bien des styles plus structurés comme Google style ou NumPy style. Exemple au format

Google :

def addition(a, b):
 """
 Calcule la somme de deux entiers.

 Args:
 a (float): premier nombre à additionner.
 b (float): second nombre à additionner.

 Returns:
 somme (float): la somme de a et b.
 """
 return a + b

Souvenez-vous que, plus tôt, on a survolé des fonctions et des méthodes Python dans VS Code pour

observer les petites boîtes dʼaide qui sʼaffichaient. Ces boîtes indiquaient la signature de la fonction, la liste

des paramètres et une courte description de son rôle. Ce texte que vous aviez lu ne vient pas dʼun fichier

caché ou dʼun site externe : il provient directement des docstrings écrites dans le code source de Python

lui-même.

Autrement dit, lorsquʼon voit par exemple :

help(len)

ou quʼon survole len() dans lʼéditeur, lʼexplication qui apparaît est issue de la docstring de cette fonction.

Cela signifie que si vous écrivez vos propres fonctions avec une docstring claire et structurée, vous

obtiendrez exactement le même comportement : en survolant votre fonction, VS Code affichera son nom,

ses paramètres, et la description que vous aurez fournie.

Cʼest donc un moyen de rendre votre code professionnel et auto-documenté : non seulement il fonctionne,

mais il “sʼexplique lui-même” lorsque quelquʼun dʼautre (ou vous-même plus tard) le lit ou le survole.

Les générateurs

Avant de voir les générateurs, rappel de la fonction range.

La fonction range() en Python est très utilisée pour générer une suite de nombres, souvent dans le

cadre dʼune boucle for. Elle ne crée pas une liste, mais un objet spécial qui produit les nombres un à un.

Cela la rend très efficace, même pour de grandes séquences.

On peut lʼappeler de trois manières différentes selon le nombre dʼarguments quʼon lui donne :

05_les_fonctions.md 2025-10-07

12 / 21

un seul argument → la borne de fin,

deux arguments → la borne de début et la borne de fin,

trois arguments → la borne de début, la borne de fin et le pas dʼincrémentation.

Voyons ces trois cas :

range(10)

Ici, range(10) commence à 0 et sʼarrête juste avant 10. Python suit toujours cette règle : la borne de fin

nʼest jamais incluse. Cela équivaut donc à la suite :

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Deuxième cas :

range(0, 10)

Cette fois, on indique explicitement le début (0) et la fin (10). Le résultat est identique au précédent, car

range(10) et range(0, 10) reviennent au même :

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Troisième cas :

range(0, 10, 2)

Ici, on ajoute un troisième argument : le pas. Cela veut dire que Python va compter de 2 en 2, en partant de

0 et en sʼarrêtant avant 10 :

[0, 2, 4, 6, 8]

Autrement dit :

le premier argument est la valeur de départ (incluse),

le deuxième est la valeur de fin (exclue),

le troisième est le pas (positif ou négatif).

On peut aussi lʼutiliser à rebours :

05_les_fonctions.md 2025-10-07

13 / 21

range(10, 0, -1) # [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Et pour visualiser ce quʼun range produit, on peut toujours le convertir en liste :

list(range(0, 10, 2))

Cela affiche concrètement les valeurs générées.

Revenons aux générateurs.

Commençons par un exemple très simple : une fonction qui affiche chaque élément dʼune liste grâce à une

boucle for.

def afficher_elements(n):
 for element in range(n):
 print(element)

afficher_elements(5)
0
1
2
3
4

Ici, la fonction parcourt la liste et affiche chaque élément un par un. Tout se passe bien, mais une fois le

print exécuté, les valeurs sont perdues : on ne peut pas les récupérer, ni les réutiliser ailleurs dans le

programme. Cette fonction ne retourne rien, elle se contente dʼafficher.

Essayons maintenant avec un return :

def retourner_elements(n):
 for element in range(n):
 return element

print(retourner_elements(10))
0

La fonction ne retourne que le premier élément de la liste. Pourquoi ? Parce que return met fin à la

fonction. Gardez bien cela à l'esprit ! Tout le code après la ligne return n'est pas exécuté.

Cʼest là quʼinterviennent les générateurs.

Un générateur permet de produire les valeurs une par une, au moment où on en a besoin, sans tout stocker

en mémoire. On crée un générateur en remplaçant return par le mot-clé yield, on va créer un générateur

qui renvoie les carrés des entiers de 0 à n-1 :

05_les_fonctions.md 2025-10-07

14 / 21

def generer_carres(n):
 for i in range(n):
 yield i ** 2

Cette fonction ne renvoie pas une liste, mais un objet générateur, cʼest-à-dire une sorte de “machine à

produire des valeurs au fur et à mesure”.

Si vous faîtes :

carres = generer_carres(10)
print(carres)
<generator object generer_carres at 0x1006e9970>

ici, carres nʼest pas une liste, mais un objet générateur. Il ne contient pas encore les valeurs, mais sait

comment les produire.

On peut lʼutiliser ainsi :

for valeur in carres:
 print(valeur)

Le comportement est le même quʼavant : les valeurs sʼaffichent une par une. Mais la différence est profonde

: la fonction ne renvoie pas tout dʼun coup. Elle suspend son exécution à chaque yield, en gardant en

mémoire son état, puis reprend là où elle sʼétait arrêtée au tour suivant.

Et pour bien comprendre ce quʼil se passe, on peut écrire :

print(next(carres))
print(next(carres))
print(next(carres))

print("Début de la boucle")
for valeur in carres:
 print(valeur)

0
1
4
Début de la boucle
9
16
25

05_les_fonctions.md 2025-10-07

15 / 21

36
49
64
81

Lorsquʼon utilise un générateur, on peut le parcourir avec une boucle for, mais il est aussi possible de

récupérer les valeurs une à une manuellement grâce à la fonction intégrée next().

Chaque appel à next(carres) demande au générateur de fournir la valeur suivante.

À ce stade, la fonction sʼest arrêtée temporairement au troisième next(), mais elle nʼest pas terminée :

Python a simplement mis son exécution en pause, prête à reprendre au prochain next().

La boucle for utilise elle aussi le mécanisme de next() en interne. Elle reprend le générateur là où il sʼétait

arrêté.

Quand on remet Python dans le contexte de sa création, au début des années 1990, il faut se souvenir que

les ordinateurs nʼavaient rien à voir avec ceux dʼaujourdʼhui. La mémoire vive se comptait souvent en

mégaoctets, parfois même en kilooctets, et il fallait faire extrêmement attention à la façon dont on stockait

et manipulait les données.

Les générateurs ont été inventés dans cet esprit : ils permettent de produire des valeurs une par une,

sans jamais tout charger en mémoire dʼun coup. À lʼépoque, cʼétait un moyen très concret dʼéconomiser les

ressources limitées dʼun ordinateur. Par exemple, au lieu de créer une énorme liste de nombres, Python

pouvait simplement “donner le suivant quand on en a besoin”, ce qui évitait de saturer la mémoire.

Aujourdʼhui, les machines sont infiniment plus puissantes, et la plupart du temps, on ne pense plus à ces

questions dʼéconomie mémoire. On écrit des boucles sur des listes entières sans se poser de problème.

Pourtant, le mécanisme des générateurs nʼa pas perdu son intérêt , bien au contraire.

Vous pouvez litéralement écrire :

carres = generer_carres(10000000000000000000)
print(carres)

print(next(carres))
print(next(carres))
print(next(carres))

⚠ retirer les lignes contenant la boucle for

Et lancer le programme, vous n'avez aucune crainte de faire planter votre ordinateur, car contrairement à

une liste il n'a pas produit les valeurs

Alors que la ligne suivante, elle, risque de planter votre ordinateur :

print(list(range(10000000000000000000))) # ⚠ A ne pas exécuter

05_les_fonctions.md 2025-10-07

16 / 21

Dans des programmes modernes qui traitent des fichiers volumineux, des flux de données, ou des appels

réseau répétés, les générateurs restent un outil essentiel pour améliorer les performances. Ils

permettent de réduire lʼusage de la mémoire et dʼaccélérer les traitements, surtout lorsquʼon travaille avec

des données quʼon nʼa pas besoin de charger entièrement.

En réalité, on a un peu “oublié” quʼils existent, simplement parce que nos ordinateurs masquent leurs

avantages. Mais du point de vue dʼun développeur conscient des ressources, utiliser un générateur au bon

endroit peut faire une grande différence : le programme devient plus fluide, plus rapide, et plus économe.

En résumé, les générateurs sont un héritage intelligent des débuts de Python, conçus pour pallier la

faiblesse du matériel dʼalors, mais toujours extrêmement pertinents aujourdʼhui pour écrire du code

performant et élégant.

Les fonctions lambda

Imaginons quʼon ait un dictionnaire dont les clés sont des noms et les valeurs des âges :

personnes = {"Alice": 25, "Bob": 19, "Charlie": 32}

On aimerait trier ces personnes en fonction de leur âge, cʼest-à-dire selon la valeur du dictionnaire et non

selon la clé.

La fonction intégrée sorted() de Python permet de le faire.

Si je fais :

print(sorted(personnes)) # ['Alice', 'Bob', 'Charlie']
print(sorted(personnes.keys())) # ['Alice', 'Bob', 'Charlie']
print(sorted(personnes.values())) # [19, 25, 32]
print(sorted(personnes.items())) # [('Alice', 25), ('Bob', 19),
('Charlie', 32)]

On constate que le premier et le deuxième print donnent le même résultat. On en déduit donc que par

défaut, Python itère sur les clés.

Le dernier print affiche les tuples triés par ordre alphabétique de leur clé.

Revenons sur notre problématique, on souhaite obtenir les informations [('Alice', 25), ('Bob',
19), ('Charlie', 32)] mais triées par ordre croissant de leur valeur.

Si on survole la fonction sorted() on voit quʼelle accepte un paramètre optionnel key= qui indique quelle

fonction utiliser pour comparer les éléments.

05_les_fonctions.md 2025-10-07

17 / 21

Commençons avec une fonction classique, je vais créer une fonction qui lorsque je lui donne un tuple de

type ("Jean", 19), elle me renvoie 19

def extraire_age(tup):
 return tup[1]

resultat = sorted(personnes.items(), key=extraire_age)
print(resultat)

On n'invoque pas la fonction extraire_age() directement, mais on l'utilise comme argument.

C'est sorted qui va invoquer la fonction pour chaque élément.

Ici, personnes.items() renvoie une liste de tuples comme :

[('Alice', 25), ('Bob', 19), ('Charlie', 32)]

La fonction extraire_age() reçoit un de ces tuples et renvoie la valeur à comparer, lʼâge, donc tup[1].
Le paramètre key=extraire_age indique à sorted() dʼutiliser cette fonction pour trier les éléments.

Cela fonctionne et on obtient le résultat attendu.

[('Bob', 19), ('Alice', 25), ('Charlie', 32)]

Mais on remarque une chose : cette fonction extraire_age() nʼaura aucune autre utilité dans le reste

du programme. Elle ne sert quʼune seule fois, pour une tâche très ponctuelle.

Cʼest exactement dans ce genre de situation quʼinterviennent les fonctions lambda. Une lambda permet

de définir une fonction anonyme (cʼest-à-dire sans nom) directement dans lʼappel dʼune autre fonction.

On peut donc réécrire le code ainsi :

05_les_fonctions.md 2025-10-07

18 / 21

resultat = sorted(personnes.items(), key=lambda item: item[1])
print(resultat)

Ici, lambda item: item[1] définit une petite fonction “sur place” :

item est le paramètre,

item[1] est la valeur renvoyée,

et on nʼa pas besoin de donner de nom à cette fonction, car elle ne servira quʼici.

En somme, la fonction lambda est une fonction anonyme, légère et temporaire, créée uniquement pour

un besoin ponctuel. Elle se comporte exactement comme une fonction normale, mais elle sʼécrit en une

seule ligne, sans def, ni return.

Cʼest une manière élégante de dire à Python :

“Voici une petite fonction que je nʼai pas besoin de nommer, utilise-la juste pour ce tri.”

On retrouve ce même principe avec dʼautres fonctions comme map(), filter() ou sorted(), dès quʼon
a besoin de passer une petite fonction simple en paramètre.

Ainsi, la fonction lambda nʼest pas un nouveau concept magique : cʼest juste une façon raccourcie dʼécrire

une fonction éphémère.

Les fonctions de haut niveau (Higher-order functions)

Une fonction dʼordre supérieur est une fonction qui peut recevoir une autre fonction en argument ou

retourner une fonction. En Python, ce concept provient de la programmation fonctionnelle et permet

dʼécrire un code plus expressif et concis.

La programmation fonctionnelle est une manière de penser le code où lʼon privilégie les fonctions

plutôt que les objets ou les instructions séquentielles.

Dans ce paradigme, on cherche à décomposer un problème en petites fonctions pures, cʼest-à-

dire des fonctions qui renvoient toujours le même résultat pour les mêmes données dʼentrée et

nʼont pas dʼeffet secondaire (elles ne modifient pas de variables extérieures, ne lisent pas de

fichiers, etc.).

Lʼidée est de transformer les données en les passant dʼune fonction à lʼautre, un peu comme sur

une chaîne de montage.

Cette approche rend le code plus prévisible, concis et facile à tester, car chaque fonction se

comporte comme une petite boîte isolée qui ne dépend que de ses paramètres.

Les fonctions comme map(), filter(), reduce() ou encore partial() du module functools sont

des exemples classiques de fonctions dʼordre supérieur.

La fonction map()

map() applique une fonction à chaque élément dʼun itérable (liste, tuple, etc.) et retourne un objet map, que
lʼon peut convertir en liste.

05_les_fonctions.md 2025-10-07

19 / 21

Exemple :

nombres = [1, 2, 3, 4]

def carre(x):
 return x ** 2

resultat = map(carre, nombres)
print(list(resultat)) # [1, 4, 9, 16]

On peut aussi lʼutiliser avec une fonction lambda :

nombres = [1, 2, 3, 4]
resultat = map(lambda x: x ** 2, nombres)
print(list(resultat))

La fonction filter()

filter() permet de sélectionner uniquement les éléments dʼun itérable pour lesquels une fonction

retourne True.

Exemple :

nombres = [1, 2, 3, 4, 5, 6]

def pair(x):
 return x % 2 == 0

resultat = filter(pair, nombres)
print(list(resultat)) # [2, 4, 6]

Avec une lambda :

resultat = filter(lambda x: x % 2 == 0, nombres)
print(list(resultat))

La fonction reduce()

reduce() nʼest pas incluse directement dans le langage, mais se trouve dans le module functools. Elle
réduit une séquence en une seule valeur en appliquant une fonction cumulativement.

Exemple : calculer la somme des éléments dʼune liste.

05_les_fonctions.md 2025-10-07

20 / 21

from functools import reduce

nombres = [1, 2, 3, 4]

def addition(x, y):
 return x + y

resultat = reduce(addition, nombres)
print(resultat) # 10

Ici, reduce exécute :

addition(1, 2) → 3

addition(3, 3) → 6

addition(6, 4) → 10

Ou avec une fonction lambda :

from functools import reduce

nombres = [1, 2, 3, 4]

resultat = reduce(lambda x, y: x + y, nombres)
print(resultat) # 10

Ce type de raisonnement est courant en programmation fonctionnelle.

La fonction partial()

partial() permet de fixer certains arguments dʼune fonction et de créer une nouvelle fonction

spécialisée.

Exemple :

from functools import partial

def puissance(base, exposant):
 return base ** exposant

carre = partial(puissance, exposant=2)
cube = partial(puissance, exposant=3)

print(carre(5)) # 25
print(cube(2)) # 8

On a ici créé deux fonctions dérivées de puissance, sans dupliquer le code. partial est très utile pour

adapter une fonction générale à un cas dʼusage précis.

05_les_fonctions.md 2025-10-07

21 / 21

En résumé, les fonctions dʼordre supérieur sont un moyen dʼécrire un code plus déclaratif : on décrit ce que

lʼon veut faire (appliquer, filtrer, réduire, spécialiser) plutôt que de détailler chaque boucle. Elles sʼaccordent

parfaitement avec les fonctions anonymes (lambda) et les compréhensions, qui sont des piliers du style

fonctionnel en Python.

Conclusion

Lʼétude des fonctions constitue une étape essentielle dans la maîtrise du langage Python. À travers

lʼensemble des notions vues, on comprend quʼune fonction nʼest pas seulement un moyen de regrouper des

instructions, mais un véritable outil dʼorganisation, de clarté et de réutilisation du code.

On a dʼabord vu quʼune fonction se définit avec def, quʼelle peut accepter des paramètres et retourner une

valeur grâce à return. Cette distinction entre procédure (aucune valeur renvoyée) et fonction (retour

dʼun résultat) traduit deux manières de structurer la logique dʼun programme.

Les paramètres permettent dʼadapter le comportement dʼune fonction à différents contextes, tandis que

les arguments nommés et les opérateurs * et / offrent un contrôle précis sur la manière de les

transmettre, garantissant à la fois lisibilité et robustesse.

Les mots-clés pass et ... jouent quant à eux un rôle structurel : ils autorisent la création de fonctions

“vides” lors de la phase de conception, marquant lʼintention dʼun développement ultérieur.

La compréhension de la portée des variables (modèle LEGB) permet de mieux raisonner sur la visibilité et

la durée de vie des données, en distinguant clairement les variables locales, globales ou internes à une

fonction imbriquée.

Les docstrings, intégrées directement dans le code, assurent une documentation lisible et accessible. Elles

font partie intégrante de la philosophie Python : écrire un code explicite, compréhensible et auto-

documenté.

Les générateurs et les fonctions lambda enrichissent cette approche fonctionnelle. Les premiers illustrent

la puissance du modèle itératif de Python, en permettant la production de données à la demande sans

surcharge mémoire. Les secondes introduisent une forme concise et expressive de définition de fonctions,

parfaitement adaptée aux traitements ponctuels.

Enfin, les fonctions dʼordre supérieur (map, filter, reduce, partial) ouvrent la voie vers une pensée

plus abstraite : on ne décrit plus seulement comment exécuter une tâche, mais quelle transformation

appliquer à une donnée. Elles illustrent la convergence de Python entre programmation impérative et

programmation fonctionnelle.

En somme, les fonctions constituent le socle de la programmation structurée en Python. Elles incarnent

lʼesprit du langage : un équilibre entre simplicité syntaxique, flexibilité dʼusage et rigueur conceptuelle.

Maîtriser ces notions, cʼest acquérir la capacité dʼécrire un code clair, modulaire et performant — une étape

incontournable avant dʼaborder la programmation orientée objet.

