05_les_fonctions.md 2025-10-07

Les fonctions en Python

Introduction

Dans tout langage de programmation, les fonctions constituent une brique essentielle pour structurer,
organiser et réutiliser le code. En Python, une fonction est un bloc d'instructions nommé qui permet
d’'exécuter une tache précise lorsque celle-ci est appelée. On la définit a I'aide du mot-clé , suivi du nom
de la fonction, d'une liste éventuelle de paramétres entre parenthéses et d'un bloc d'instructions indenté.
Lorsqu’une fonction accomplit son travail, elle peut renvoyer un résultat a I'aide du mot-clé

L'intérét majeur des fonctions réside dans la décomposition d'un programme en sous-problémes cohérents
et indépendants. On peut ainsi isoler des calculs, éviter la répétition du code, et faciliter les tests ou la
maintenance. Une bonne pratique consiste a donner aux fonctions des noms explicites et a documenter
leur comportement a l'aide d'une docstring.

Python introduit également la notion de portée des variables, c'est-a-dire la zone du programme ou une
variable est accessible. Les variables définies a I'intérieur d'une fonction sont locales et disparaissent a la
fin de son exécution, tandis que celles définies a I'extérieur ont une portée globale. Cette distinction garantit
I'isolation des fonctions et prévient les effets de bord indésirables.

Les fonctions peuvent recevoir un nombre variable de paramétres, utiliser des valeurs par défaut ou des
arguments nommeés, ce qui leur confére une grande flexibilité. Il est aussi possible de créer des fonctions
anonymes, dites lambda, pour des opérations simples et ponctuelles. Grace a cette richesse syntaxique et
conceptuelle, Python permet d'adopter un style de programmation clair, modulaire et expressif, ou chaque
fonction joue le réle d'un outil bien défini au service de la lisibilité et de la robustesse du programme.

Exemples de fonctions

Il'y a deux types de fonctions de maniere générale, les procédures et les fonctions. Méme si les deux se
construisent de la méme facon, ils ont des différences importantes.

Une procédure est une fonction qui ne renvoie pas de résultat.

def dire_bonjour
print("Bonjour

+ nom)

dire_bonjour("Jean")

La fonction est une procédure qui renvoie et ne fait rien d'autre que afficher le
message « Bonjour » suivi du nom donné en argument.

On le sait, en survolant la fonction, on peut voir qui indique que la fonction ne renvoie pas de
résultat.

1/21

05_les_fonctions.md 2025-10-07

g main.py
& mainpy > .. | (function) dire_bonjour(nom) —
(nom):

print("Bonjour " + nom)

4 dire_bonjour("Jean")

Une fonction, au contraire, renvoie (return) un résultat.

def somme
return a + b

resultat = somme(2, 3)
print(resultat)

Donc si elle retourne un résultat, il faut donc stocker le retour dans une variable.

La fonction est une fonction qui renvoie le résultat de I'addition de ses deux arguments.
Litéralement, elle retourne le résultat de

Les développeurs n'aiment pas trop les procédures, car elles ne retournent rien. De ce fait, on ne sait pas
trop si elles ont bien fonctionné.

Lorsqu’on écrit une fonction, on cherche avant tout a produire un résultat, c'est-a-dire une valeur
exploitable par le reste du programme. Une fonction qui retourne une valeur, méme simple comme un
booléen ou , est donc toujours plus utile qu'une procédure qui ne renvoie rien.

def creates_folder
os.mkdir(folder_name)
return

if creates_folder("my_folder"):
print("Folder created")

Cette fonction nous permet ainsi de créer un dossier et de s'assurer que la création a réussi.

En Python, une fonction qui ne comporte pas d'instruction renvoie implicitement None. Ce type de
comportement limite souvent les possibilités de test, de réutilisation et de composition du code. A l'inverse,
une fonction qui renvoie une valeur permet de chainer les appels, de vérifier facilement son comportement
dans des tests unitaires, et de prendre des décisions a partir de son résultat.

Parametres et arguments

2/21

05_les_fonctions.md 2025-10-07

Remettons les termes a leur place. Dans la fonction , on a deux , a et b. Lorsque on
appelle cette fonction, on lui fournit deux arguments, ” et

Ces arguments peuvent étre transmis de deux maniéres différentes : par position ou par nom. Comprendre
cette distinction est fondamental, car elle influence la fagon dont les valeurs sont associées aux parametres

de la fonction.

Un positional argument (argument positionnel) est un argument dont la valeur est associée a un
parameétre selon I'ordre dans lequel il apparait dans I'appel de la fonction. Cela signifie que la premiére
valeur transmise correspond au premier parametre, la deuxiéme valeur au deuxieme parameétre, et ainsi de
suite. Ce mode est le plus direct, mais il exige de respecter strictement l'ordre défini dans la signature de la

fonction. Par exemple :

def afficher_message -
print(nom + " dit : " + message)

afficher_message("Alice", "Bonjour ')

Ici, est associé a , et a simplement par leur position respective.

Un naming argument (ou argument nommé) est un argument dont la valeur est associée explicitement a
un parametre par son nom. Ce mode d'appel rend le code plus lisible et plus souple, car l'ordre des
arguments n'a plus d'importance. On précise directement a quel parameétre on souhaite affecter une valeur :

afficher_message(message="Salut !", nom="Bob")

Méme si les arguments ne sont pas dans le méme ordre que dans la définition de la fonction, Python sait
que recoit et que recoit

L'équipe de Python préconise d'ailleurs d'utiliser le Naming Argument

Les arguments nommeés sont donc particulierement utiles lorsque la fonction comporte de nombreux
paramétres ou lorsque certains ont des valeurs par défaut. lls rendent les appels plus explicites et évitent
les erreurs d'ordre, tout en améliorant la compréhension du code.

En Python, les f-strings (pour formatted strings) sont une maniére moderne et efficace d'insérer des
valeurs de variables directement a I'intérieur d'une chaine de caractéres. Au lieu de :

print(nom + " dit : " + message)
on peut écrire :

print(f"{nom} dit : {messagel}")

3/21

05_les_fonctions.md 2025-10-07

Une f-string se reconnait grace a la lettre T placée juste avant les guillemets ouvrants de la chaine.
Les f-strings permettent également d’'évaluer directement des expressions, ce qui les rend tres
puissantes. Par exemple, on peut écrire :

print(f'"Le nombre de lettres du message est : {len(message)}")

Cela permet de calculer la longueur d'une chaine de caractéres a la volée.

Les opérateurs * et [dans les fonctions
Lorsqu’on définit une fonction en Python, on peut rencontrer une syntaxe qui surprend au début :

def ma_fonction

Le symbole * placé ici sert a imposer une régle de clarté : tous les parameétres écrits aprés cette étoile
doivent obligatoirement étre passés par nom (Naming Argument) lors de I'appel de la fonction.

Autrement dit, @ et b peuvent étre donnés dans l'ordre (Positional Argument), mais ¢ et d doivent étre
indiqués avec leur nom pour que Python sache clairement a quoi chaque valeur correspond.

Regardons un exemple :

def ma_fonction
print(a, b, c, d)

Voici un appel correct :

ma_fonction(1, 2, c=3, d=4)

Et voici un appel qui provoque une erreur :

ma_fonction(1, 2, 3, 4)

Pourguoi cette contrainte ? Parce qu'elle force la lisibilité. Lorsqu'une fonction commence a avoir
beaucoup de parametres, il devient facile de se tromper dans l'ordre. Grace a cette étoile, Python oblige a
nommer explicitement certains arguments, ce qui rend le code beaucoup plus clair :

def creer_utilisateur :
print(f"{prenom} {nom}, {age} ans, habite a {ville}")

4/21

05_les_fonctions.md 2025-10-07
creer_utilisateur("Durand", "Alice", age=25, ville="Paris")

Ici, personne ne peut confondre ce que représente chaque valeur : le code est auto-explicite.

En résumé, cette étoile * agit comme une barriére logique : tout ce qui est avant peut étre passé par
position, et tout ce qui est aprés doit étre passé par nom. C'est une maniére élégante pour Python
d'encourager les bonnes pratiques de lisibilité et d'éviter les erreurs d'ordre dans les appels de fonction.

En Python, le symbole / dans la définition des parametres d'une fonction joue un réle opposé a celui de
I'astérisque *. La ou * impose que les paramétres qui le suivent soient passés par nom, le / impose au
contraire que les parameétres qui le précédent soient passés par position uniquement.

On appelle ce symbole I'opérateur de séparation des arguments positionnels (positional-only argument

separator).

Prenons un exemple simple :

def afficher_coordonnees :
print(f"Position : x = {x}, y = {y}")

Ici, le / signifie que x et v sont des arguments positionnels seulement. Cela veut dire que lors de I'appel
de la fonction, on ne peut pas écrire leurs noms :

afficher_coordonnees(10,)
afficher_coordonnees(x=10, y=20)

X3

Cette restriction est utile dans plusieurs situations. D'abord, elle empéche qu’on s'appuie sur des noms de
paramétres qui pourraient changer a l'avenir. Par exemple, les fonctions intégrées comme ou
utilisent souvent ce mécanisme pour garantir la compatibilité du code méme si les développeurs internes de
Python modifient un jour leurs noms de parameétres. Ensuite, elle permet d'écrire des fonctions dont les
arguments sont purement conceptuels ou anonymes, ou l'ordre seul a un sens logique (comme des
coordonnées, des valeurs mathématiques, ou des comparaisons).

On peut aussi combiner / et * dans la méme signature pour définir précisément quels paramétres doivent
étre donnés par position, lesquels peuvent étre donnés librement, et lesquels doivent étre nommés. Par

exemple :
def exemple :
print(a, b, c, d)

exemple(1, 2, c=3, d=4)

5/21

05_les_fonctions.md 2025-10-07

Dans cet exemple :

e o et b doivent étre donnés par position,

e C et d doivent étre donnés par nom.

Ainsi, I'opérateur / est une maniéere de contréler la fagon dont les arguments doivent étre passés a une
fonction, renforgant la cohérence et la lisibilité du code.

Si on parle maintenant de ces deux symboles, / et *, c'est parce que vous allez commencer a les croiser
en survolant les signatures de fonctions et de méthodes dans votre éditeur. Vous savez déja comment lire
ces infobulles et décrypter les parametres gu'elles affichent, donc I'objectif ici est simplement de vous
permettre de comprendre ce que signifient ces signes particuliers lorsqu'ils apparaissent.

Par exemple, si vous voyez une fonction affichée comme :

len(obj, /)

cela veut dire que doit étre passé par position uniquement.

Vous ne pourrez pas écrire :

len(obj="Jean") # X
len("Jean")

car doit étre passé par position.

En connaissant cette regle, vous saurez immédiatement comment appeler correctement la fonction sans
provoquer d'erreur, et surtout, vous comprendrez la logique de conception qui se cache derriére. L'idée
n'est pas de les mémoriser maintenant, mais de reconnaitre leur réle quand vous les verrez. Vous saurez
qu'a gauche d'un / se trouve un argument positionnel seulement, et a droite d'un * se trouve un argument

nommé.
Les mots clés et Elipsis
Le mot-clé en Python est une instruction particuliére qui ne fait absolument rien lorsqu’elle est

exécutée. Cela peut sembler étrange au premier abord, mais cette instruction a une utilité bien précise : elle
permet de laisser un bloc de code vide sans provoquer d'erreur de syntaxe.

Dans le contexte d'une fonction, est souvent utilisé comme bouchon temporaire. Lorsque I'on définit
la structure d'une fonction, mais qu’on ne veut pas encore écrire son contenu, Python exige qu'il y ait au
moins une instruction a l'intérieur du bloc. Sans cela, I'interpréteur I&éverait une erreur. C'est dans cette
situation que entre en jeu.

Exemple :

def calculer_total
pass

6/21

05_les_fonctions.md 2025-10-07

Ici, la fonction ne fait rien, mais elle est syntaxiquement valide. On peut donc déja
I'appeler, la documenter, l'intégrer a une classe ou a un module, et y revenir plus tard pour en écrire le
contenu.

C'est une pratique trés utilisée lorsqu’on construit I'architecture d'un programme avant d'en implémenter les
détails. Cela permet de préparer la structure du code, d'écrire les signatures des fonctions et de tester
I'enchainement global, sans bloquer la progression du projet.

On rencontre aussi dans d'autres contextes : pour laisser vide une classe, une condition 1T, ou une

boucle, lorsqu’on veut réserver la place du code a venir.

Ainsi, dans une fonction, sert de placeholder, un mot-clé d'attente qui permet de garder un code
propre et fonctionnel, tout en indigquant clairement qu'il reste une partie a compléter plus tard.

L'instruction et I'objet spécial (appelé ellipsis) peuvent sembler similaires, car tous deux
permettent de laisser un bloc de code vide sans provoquer d'erreur. Pourtant, ils n‘'ont ni la méme nature,
ni le méme usage.

L'ellipse n'est pas une instruction : c'est un objet Python de type . On peut I'utiliser
partout ol une expression est attendue, comme une valeur symbolique ou un marqueur de code non
implémenté. Elle est donc davantage sémantique gue syntaxique : elle exprime une intention, un “a venir”
dans le code.

Exemple :

def calculer_total():

Ici, Python ne fait pas appel a une instruction, mais évalue simplement I'objet , ce qui est autorisé
car c'est une expression valide. Dans la pratique, cela revient a avoir une fonction vide, mais l'idée est
différente : indique que le corps est volontairement incomplet , une sorte de promesse implicite que
la fonction sera complétée plus tard.

On rencontre souvent dans des classes abstraites, des squelettes de modules ou des stubs destinés a
I'auto-complétion ou a la documentation. Par exemple :

class Repository:
def save AR
def delete IR

Nous y reviendrons plus tard.
En résumé:

. est une instruction qui “ne fait rien” mais rend le bloc exécutable.

7/21

05_les_fonctions.md 2025-10-07

. est un objet qui exprime “non implémenté” et peut étre utilisé comme un marqueur plus
conceptuel, notamment dans les architectures ou les interfaces.

Dans un code pédagogique ou en développement progressif, est plus courant. devient
intéressant lorsqu’on veut signaler une intention, une structure en attente ou un comportement abstrait.

La portée d'une variable et le principe LEGB

La portée d'une variable (ou variable scope) désigne I'endroit du programme ou cette variable est
connue, visible et accessible. En Python, toutes les variables ne vivent pas dans le méme espace :
certaines existent uniquement a l'intérieur d'une fonction, d'autres sont accessibles partout dans le fichier.
Comprendre cette différence est essentiel pour éviter des erreurs ou des comportements inattendus.

Commencgons par un exemple simple :

X =

def afficher
y:
print("x =", x)
print("y =", y)

afficher()
print("x a U'extérieur =", x)
print("y a U'extérieur =", y)

Ici, x est définie a l'extérieur de la fonction : on dit qu’elle a une portée globale. Elle est accessible
partout dans le programme, y compris a l'intérieur de la fonction.

En revanche, v est définie a l'intérieur de la fonction . Elle n'existe que le temps de
I'exécution de cette fonction, et on ne peut pas |'utiliser ailleurs. Lorsqu’on essaie d'afficher v a la fin,
Python déclenche une erreur :

NameError: name is not defined

y

Cela illustre une regle simple :

e une variable définie dans une fonction est locale a cette fonction,
e une variable définie en dehors de toute fonction est globale dans le module.

Python applique cette logique a travers ce qu'on appelle le modéle LEGB (Local, Enclosing, Global, Built-in),
qui correspond a l'ordre dans lequel I'interpréteur cherche une variable :

1. Local : dans la fonction en cours.

2. Enclosing : dans une fonction englobante (si on est dans une fonction a I'intérieur d'une autre).
3. Global : dans le fichier courant (en dehors des fonctions).

4. Built-in : dans les noms prédéfinis de Python (comme , , etc.).

8/21

05_les_fonctions.md 2025-10-07

Regardons un exemple plus visuel :

x = "globale"

def exterieure():
x = "enclosing" # variable de la fonction englobante

def interieure():
x = "locale"
print(x)

interieure() # On execute la fonction 'interieur'
print(x)

exterieure() # On execute la fonction 'exterieure'’
print(x)

Résultat :

locale
enclosing
globale

Python commence toujours par chercher la variable dans la portée la plus proche, puis remonte
progressivement.

Enfin, on peut modifier une variable globale a I'intérieur d'une fonction, mais uniquement si on la déclare
explicitement avec le mot-clé

compteur =

def incrementer():
global compteur
compteur +=

Sans ce mot-clé, Python considérerait comme une nouvelle variable locale et |éverait une erreur.
Avec le mot clé "global", on lui dit en somme "Cherche une variable a I'extérieur de ton scope qui porte le

nom de 'compteur'".
En résumé:

e Les variables locales existent a I'intérieur d'une fonction.
e Les variables globales existent dans tout le programme.
e Python choisit toujours la version la plus proche selon la réegle LEGB.

9/21

05_les_fonctions.md 2025-10-07

Comprendre cette portée, c'est apprendre a controler la durée de vie et la visibilité des données qu’on
manipule, et donc a écrire un code plus propre, plus prévisible et plus sar.

Les Docstrings

Les docstrings (ou documentation strings) sont un élément fondamental du style de programmation en
Python. Ce sont des chaines de caractéres placées juste aprés la définition d'une fonction, d'une classe
ou d'un module, et elles servent a documenter le code directement a l'intérieur du programme.

Une docstring permet d’'expliquer ce que fait une fonction, a quoi servent ses parametres, et ce qu'elle
renvoie. Elle est accessible depuis le code lui-méme, grace a l'attribut spécial , ou via la fonction

Voici un exemple simple :

def saluer

Affiche un message de salutation personnalisé.

Parametres
nom : le prénom de la personne a saluer.

Retour
None

print(f"Bonjour {nom} !")

Ici, la chaine placée entre triple guillemets constitue la docstring de la fonction. Python la
reconnait automatiquement, sans qu'il soit nécessaire de I'affecter a une variable.

On peut ensuite y accéder directement :

print(saluer.__doc__)

ou bien afficher une aide plus lisible :

help(saluer)

L'intérét principal des docstrings est de rendre le code compréhensible sans quitter le fichier source.
Elles servent de documentation intégrée, utile aussi bien pour les autres développeurs que pour soi-méme
quelques semaines plus tard.

Il est d'usage d'y préciser :

¢ le réle général de la fonction ou de la classe,
e |es paramétres d'entrée (avec leur type attendu),

10/21

05_les_fonctions.md 2025-10-07

e |a valeur de retour,

e et parfois les exceptions possibles.

Dans les projets professionnels ou pédagogiques, les docstrings suivent souvent un format reconnu comme
PEP 257, ou bien des styles plus structurés comme Google style ou NumPy style. Exemple au format
Google :

def addition

Calcule la somme de deux entiers.

Args:
a (float): premier nombre a additionner.
b (float): second nombre a additionner.

Returns:
somme (float): la somme de a et b.

return a + b

Souvenez-vous que, plus tét, on a survolé des fonctions et des méthodes Python dans VS Code pour
observer les petites boites d'aide qui s'affichaient. Ces boites indiquaient la signature de la fonction, la liste
des parametres et une courte description de son réle. Ce texte que vous aviez lu ne vient pas d'un fichier
caché ou d'un site externe : il provient directement des docstrings écrites dans le code source de Python
lui-méme.

Autrement dit, lorsqu’on voit par exemple :
help(len)

ou qu’on survole dans I'éditeur, I'explication qui apparait est issue de la docstring de cette fonction.

Cela signifie que si vous écrivez vos propres fonctions avec une docstring claire et structurée, vous
obtiendrez exactement le méme comportement : en survolant votre fonction, VS Code affichera son nom,
ses parameétres, et la description que vous aurez fournie.

C'est donc un moyen de rendre votre code professionnel et auto-documenté : non seulement il fonctionne,

mais il “s’expligue lui-méme"” lorsque quelqu’un d'autre (ou vous-méme plus tard) le lit ou le survole.

Les générateurs
Avant de voir les générateurs, rappel de la fonction

La fonction en Python est trés utilisée pour générer une suite de nombres, souvent dans le
cadre d'une boucle . Elle ne crée pas une liste, mais un objet spécial qui produit les nombres un a un.
Cela la rend trés efficace, méme pour de grandes séquences.

On peut I'appeler de trois maniéres différentes selon le nombre d'arguments qu’on lui donne :

11/21

05_les_fonctions.md 2025-10-07

e un seul argument - la borne de fin,

e deux arguments = la borne de début et la borne de fin,

e trois arguments - la borne de début, la borne de fin et le pas d'incrémentation.
Voyons ces trois cas :

range(10)

Ici, commence a 0 et s'arréte juste avant 10. Python suit toujours cette regle : la borne de fin
n'est jamais incluse. Cela équivaut donc a la suite :

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Deuxiéme cas :

range(0,)

Cette fois, on indique explicitement le début (7) et la fin (17). Le résultat est identique au précédent, car
et reviennent au méme :

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Troisiéme cas :

range(0, y 2)

Ici, on ajoute un troisieme argument : le pas. Cela veut dire que Python va compter de 2 en 2, en partant de
et en s'arrétant avant

[0, 2, 4, 6, 8]

Autrement dit :

¢ |e premier argument est la valeur de départ (incluse),
¢ |e deuxiéme est la valeur de fin (exclue),
e |e troisieme est le pas (positif ou négatif).

On peut aussi l'utiliser a rebours :

12 /21

05_les_fonctions.md 2025-10-07

range(10, 0,) # [1e, 9, 8, 7, 6, 5, 4, 3, 2, 1]
Et pour visualiser ce qu'un produit, on peut toujours le convertir en liste :
list(range(0, , 2))

Cela affiche concretement les valeurs générées.
Revenons aux générateurs.

Commencons par un exemple trés simple : une fonction qui affiche chaque élément d'une liste grace a une

boucle

def afficher_elements :
for element in range(n):
print(element)

fficher_elements(5)

aff
0
1
#t 2
3
4

Ici, la fonction parcourt la liste et affiche chaque élément un par un. Tout se passe bien, mais une fois le
exécuté, les valeurs sont perdues : on ne peut pas les récupérer, ni les réutiliser ailleurs dans le
programme. Cette fonction ne retourne rien, elle se contente d'afficher.

Essayons maintenant avec un

def retourner_elements :
for element in range(n):
return element

print(retourner_elements(10))

0
La fonction ne retourne que le premier élément de la liste. Pourquoi ? Parce que met fin ala
fonction. Gardez bien cela a I'esprit ! Tout le code aprés la ligne n'est pas exécuté.

C'est la qu'interviennent les générateurs.

Un générateur permet de produire les valeurs une par une, au moment ou on en a besoin, sans tout stocker
en mémoire. On crée un générateur en remplagant par le mot-clé , on va créer un générateur

qui renvoie les carrés des entiers de 7 a

13/21

05_les_fonctions.md 2025-10-07

def generer_carres :
for i in range(n):
yield i *x*

Cette fonction ne renvoie pas une liste, mais un objet générateur, c'est-a-dire une sorte de “machine a
produire des valeurs au fur et a mesure”.

Si vous faites :

carres = generer_carres(10)
print(carres)
<generator object generer_carres at 0x1006e9970>

ici, n'est pas une liste, mais un objet générateur. Il ne contient pas encore les valeurs, mais sait
comment les produire.

On peut I'utiliser ainsi :

for valeur in carres:
print(valeur)

Le comportement est le méme qu’avant : les valeurs s’affichent une par une. Mais la différence est profonde
: la fonction ne renvoie pas tout d'un coup. Elle suspend son exécution a chaque , en gardant en

mémoire son état, puis reprend la ou elle s'était arrétée au tour suivant.

Et pour bien comprendre ce gqu'il se passe, on peut écrire :

print(next(carres))
print(next(carres))
print(next(carres))

print("Début de la boucle")
for valeur in carres:
print(valeur)

IR

Début de la boucle
9
16
25

14 /21

05_les_fonctions.md 2025-10-07

36
49
64
81

Lorsqu’on utilise un générateur, on peut le parcourir avec une boucle , mais il est aussi possible de
récupérer les valeurs une a une manuellement grace a la fonction intégrée

Chaque appel a demande au générateur de fournir la valeur suivante.

A ce stade, la fonction s'est arrétée temporairement au troisieme , mais elle n'est pas terminée :
Python a simplement mis son exécution en pause, préte a reprendre au prochain

La boucle utilise elle aussi le mécanisme de en interne. Elle reprend le générateur la ou il s'était
arrété.

Quand on remet Python dans le contexte de sa création, au début des années 1990, il faut se souvenir que
les ordinateurs n'avaient rien a voir avec ceux d'aujourd’hui. La mémoire vive se comptait souvent en
meégaoctets, parfois méme en kilooctets, et il fallait faire extrémement attention a la fagon dont on stockait
et manipulait les données.

Les générateurs ont été inventés dans cet esprit : ils permettent de produire des valeurs une par une,
sans jamais tout charger en mémoire d'un coup. A I'époque, c'était un moyen trés concret d'économiser les
ressources limitées d'un ordinateur. Par exemple, au lieu de créer une énorme liste de nombres, Python
pouvait simplement “donner le suivant quand on en a besoin”, ce qui évitait de saturer la mémoire.

Aujourd’hui, les machines sont infiniment plus puissantes, et la plupart du temps, on ne pense plus a ces
questions d'économie mémoire. On écrit des boucles sur des listes entiéres sans se poser de probléme.
Pourtant, le mécanisme des générateurs n'a pas perdu son intérét, bien au contraire.

Vous pouvez litéralement écrire :

carres = generer_carres()
print(carres)

print(next(carres))
print(next(carres))
print(next(carres))

Et lancer le programme, vous n'avez aucune crainte de faire planter votre ordinateur, car contrairement a
une liste il n'a pas produit les valeurs

Alors que la ligne suivante, elle, risque de planter votre ordinateur :

print(list(range()))

15/21

05_les_fonctions.md 2025-10-07

Dans des programmes modernes qui traitent des fichiers volumineux, des flux de données, ou des appels
réseau répétés, les générateurs restent un outil essentiel pour améliorer les performances. lls
permettent de réduire I'usage de la mémoire et d'accélérer les traitements, surtout lorsqu’on travaille avec
des données qu'on n'a pas besoin de charger entierement.

En réalité, on a un peu "oublié” qu'ils existent, simplement parce que nos ordinateurs masquent leurs
avantages. Mais du point de vue d'un développeur conscient des ressources, utiliser un générateur au bon
endroit peut faire une grande différence : le programme devient plus fluide, plus rapide, et plus économe.

En résumé, les générateurs sont un héritage intelligent des débuts de Python, congus pour pallier la
faiblesse du matériel d'alors, mais toujours extrémement pertinents aujourd’hui pour écrire du code
performant et élégant.

Les fonctions lambda

Imaginons qu’on ait un dictionnaire dont les clés sont des noms et les valeurs des ages :

personnes = {"Alice": , "Bob": , "Charlie": }

On aimerait trier ces personnes en fonction de leur age, c'est-a-dire selon la valeur du dictionnaire et non

selon la clé.

La fonction intégrée de Python permet de le faire.

Si je fais :
print(sorted
print(sorted

print(sorted
print(sorted

personnes))
personnes.keys()))
personnes.values()))
personnes.items()))

—_~ o~ o~ o~

On constate que le premier et le deuxieme donnent le méme résultat. On en déduit donc que par
défaut, Python itére sur les clés.

Le dernier affiche les tuples triés par ordre alphabétique de leur clé.

Revenons sur notre problématique, on souhaite obtenir les informations
mais triées par ordre croissant de leur valeur.

Si on survole la fonction on voit qu'elle accepte un parametre optionnel qui indique quelle
fonction utiliser pour comparer les éléments.

16 /21

05_les_fonctions.md 2025-10-07

6 print(sorted(personnes.items())|)

dbCliUic,:, ALCLlUWLC L uppvi bad ik el i PUL Wil il WaWie ol | g

£

/s

key: =
reverse: bool =

) = list[SupportsRichComparisonTasorted]

Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customize the sort order, and the
reverse flag can be set to request the result in descending order.

Commencons avec une fonction classique, je vais créer une fonction qui lorsque je lui donne un tuple de
type , elle me renvoie

def extraire_age
return tup[1]

resultat = sorted(personnes.items(), key=extraire_age)
print(resultat)

On n'invoque pas la fonction directement, mais on I'utilise comme argument.
C'est qui va invoquer la fonction pour chaque élément.
Ici, renvoie une liste de tuples comme :

[('Alice', 25), ('Bob', 19), ('Charlie', 32)]

La fonction recoit un de ces tuples et renvoie la valeur a comparer, I'dge, donc
Le parametre indique a d'utiliser cette fonction pour trier les éléments.

Cela fonctionne et on obtient le résultat attendu.

[('Bob', 19), ('Alice', 25), ('Charlie', 32)1

Mais on remarque une chose : cette fonction n'aura aucune autre utilité dans le reste
du programme. Elle ne sert qu'une seule fois, pour une tache trés ponctuelle.

C'est exactement dans ce genre de situation qu'interviennent les fonctions lambda. Une lambda permet
de définir une fonction anonyme (c'est-a-dire sans nom) directement dans I'appel d'une autre fonction.

On peut donc réécrire le code ainsi :

17/21

05_les_fonctions.md 2025-10-07

resultat = sorted(personnes.items(), key=lambda item: item[1])
print(resultat)

Ici, définit une petite fonction “sur place” :

. est le paramétre,
. est la valeur renvoyée,
e et onn'a pas besoin de donner de nom a cette fonction, car elle ne servira qu'ici.

En somme, la fonction est une fonction anonyme, légére et temporaire, créée uniquement pour
un besoin ponctuel. Elle se comporte exactement comme une fonction normale, mais elle s'écrit en une
seule ligne, sans , ni

C'est une maniére élégante de dire a Python:
"Voici une petite fonction que je n'ai pas besoin de nommer, utilise-la juste pour ce tri."

On retrouve ce méme principe avec d'autres fonctions comme , ou , dés qu'on
a besoin de passer une petite fonction simple en parameétre.

Ainsi, la fonction lambda n'est pas un nouveau concept magique : c'est juste une fagon raccourcie d'écrire
une fonction éphémeére.

Les fonctions de haut niveau (Higher-order functions)

Une fonction d'ordre supérieur est une fonction qui peut recevoir une autre fonction en argument ou
retourner une fonction. En Python, ce concept provient de la programmation fonctionnelle et permet
d'écrire un code plus expressif et concis.

La programmation fonctionnelle est une maniéere de penser le code ou I'on privilégie les fonctions
plutot que les objets ou les instructions séquentielles.

Dans ce paradigme, on cherche a décomposer un probléme en petites fonctions pures, c'est-a-
dire des fonctions qui renvoient toujours le méme résultat pour les mémes données d'entrée et
n'ont pas d'effet secondaire (elles ne modifient pas de variables extérieures, ne lisent pas de
fichiers, etc.).

L'idée est de transformer les données en les passant d'une fonction a |'autre, un peu comme sur
une chaine de montage.

Cette approche rend le code plus prévisible, concis et facile a tester, car chaque fonction se
comporte comme une petite boite isolée qui ne dépend que de ses paramétres.

Les fonctions comme , , ou encore du module sont

des exemples classiques de fonctions d'ordre supérieur.
La fonction

applique une fonction a chaque élément d'un itérable (liste, tuple, etc.) et retourne un objet , que
I'on peut convertir en liste.

18 /21

05_les_fonctions.md

Exemple :

nombres = [1, 2, 3, 4]

def carre
return X xx

resultat = map(carre, nombres)
print(list(resultat)) # [1, 4, 9, 16]

On peut aussi l'utiliser avec une fonction

nombres = [1, 2, 3, 4]
resultat = map(lambda x: x %k 2, nombres)
print(list(resultat))

La fonction

2025-10-07

permet de sélectionner uniquement les éléments d'un itérable pour lesquels une fonction

retourne

Exemple :

nombres = [1, 2, 3, 4, 5, 6]

def pair
return x % ==

resultat = filter(pair, nombres)
print(list(resultat)) # [2, 4, 6]

Avec une

resultat = filter(lambda x: x % 2 == 0, nombres)
print(list(resultat))
La fonction

n'est pas incluse directement dans le langage, mais se trouve dans le module
réduit une séquence en une seule valeur en appliquant une fonction cumulativement.

Exemple : calculer la somme des éléments d'une liste.

19/21

. Elle

05_les_fonctions.md

from functools import reduce
nombres = [1, 2, 3, 4]

def addition(x, y):
return x + vy

resultat = reduce(addition, nombres)
print(resultat) # 10

Ici, exécute :
° >3
° >0
° - 10

Ou avec une fonction

from functools import reduce
nombres = [1, 2, 3, 4]
resultat = reduce(lambda x, y: x + y, nombres)
print(resultat) # 10
Ce type de raisonnement est courant en programmation fonctionnelle.

La fonction

2025-10-07

permet de fixer certains arguments d'une fonction et de créer une nouvelle fonction

spécialisée.

Exemple :

from functools import partial

def puissance(base, exposant):
return base *xx exposant

carre = partial(puissance, exposant=2)
cube = partial(puissance, exposant=3)
print(carre(5)) # 25
print(cube(2)) # 8

On aici créé deux fonctions dérivées de , sans dupliquer le code.

adapter une fonction générale a un cas d'usage précis.

20/21

est trés utile pour

05_les_fonctions.md 2025-10-07

En résumé, les fonctions d'ordre supérieur sont un moyen d'écrire un code plus déclaratif : on décrit ce que
I'on veut faire (appliquer, filtrer, réduire, spécialiser) plutét que de détailler chaque boucle. Elles s'accordent
parfaitement avec les fonctions anonymes () et les compréhensions, qui sont des piliers du style
fonctionnel en Python.

Conclusion

L'étude des fonctions constitue une étape essentielle dans la maitrise du langage Python. A travers
I'ensemble des notions vues, on comprend qu’une fonction n‘est pas seulement un moyen de regrouper des
instructions, mais un véritable outil d'organisation, de clarté et de réutilisation du code.

On a d'abord vu qu'une fonction se définit avec , qu’elle peut accepter des paramétres et retourner une
valeur grace a . Cette distinction entre procédure (aucune valeur renvoyée) et fonction (retour
d'un résultat) traduit deux manieres de structurer la logique d'un programme.

Les paramétres permettent d'adapter le comportement d'une fonction a différents contextes, tandis que
les arguments nommeés et les opérateurs *+ et / offrent un contréle précis sur la maniére de les
transmettre, garantissant a la fois lisibilité et robustesse.

Les mots-clés et jouent quant a eux un réle structurel : ils autorisent la création de fonctions
"vides" lors de la phase de conception, marquant l'intention d'un développement ultérieur.

La compréhension de la portée des variables (modéle LEGB) permet de mieux raisonner sur la visibilité et
la durée de vie des données, en distinguant clairement les variables locales, globales ou internes a une
fonction imbriquée.

Les docstrings, intégrées directement dans le code, assurent une documentation lisible et accessible. Elles
font partie intégrante de la philosophie Python : écrire un code explicite, compréhensible et auto-
documenté.

Les générateurs et les fonctions lambda enrichissent cette approche fonctionnelle. Les premiers illustrent
la puissance du modele itératif de Python, en permettant la production de données a la demande sans
surcharge mémoire. Les secondes introduisent une forme concise et expressive de définition de fonctions,
parfaitement adaptée aux traitements ponctuels.

Enfin, les fonctions d'ordre supérieur (, , ,) ouvrent la voie vers une pensée
plus abstraite : on ne décrit plus seulement comment exécuter une tache, mais quelle transformation
appliquer a une donnée. Elles illustrent la convergence de Python entre programmation impérative et
programmation fonctionnelle.

En somme, les fonctions constituent le socle de la programmation structurée en Python. Elles incarnent
I'esprit du langage : un équilibre entre simplicité syntaxique, flexibilité d'usage et rigueur conceptuelle.
Maitriser ces notions, c'est acquérir la capacité d'écrire un code clair, modulaire et performant — une étape
incontournable avant d'aborder la programmation orientée objet.

21/21

