
05_modules.md 2025-11-01

1 / 11

Les modules

Introduction

Un module, c'est simplement un fichier Python (.py) qui contient du code : des fonctions, des variables,

des constantes, et parfois des classes. L'idée est de regrouper tout ce qui traite du même sujet dans un

seul fichier, pour pouvoir l'utiliser facilement ailleurs dans le programme en faisant un import.

Pourquoi est-ce utile ? D'abord, cela rend le code plus clair : au lieu d'avoir tout dans un énorme fichier, on

peut organiser le code par thème. Ensuite, c'est réutilisable : si on a besoin de la même fonctionnalité dans

un autre projet, on copie simplement le fichier. On peut même le partager avec d'autres développeurs.

Un module crée ce qu'on appelle un "espace de noms". Concrètement, cela signifie que si on a une fonction

calculer() dans le module maths.py et une autre fonction calculer() dans stats.py, elles ne vont

pas entrer en conflit. Quand on fait import maths, on sait exactement d'où vient chaque fonction :

maths.calculer(). Cela évite les bugs et rend le code plus facile à comprendre.

Un point important à comprendre : quand on fait import mon_module pour la première fois, Python

exécute tout le code du fichier de haut en bas, puis met le résultat en mémoire (on dit qu'il est "mis en

cache"). Les fois suivantes, Python réutilise ce qui est déjà en mémoire. C'est rapide et cela garantit que

tout le monde utilise la même version. Par contre, attention : tout ce qu'on écrit au niveau principal du

module (pas dans une fonction) va s'exécuter à l'import. Il faut donc éviter de mettre de la logique métier à

ce niveau, et garder juste des définitions de fonctions et de classes.

Dans un module, on a accès à quelques variables spéciales comme __name__, __doc__ ou __file__.
Elles donnent des informations sur le module. On peut aussi définir __all__ : c'est une liste qui dit

explicitement ce qui fait partie de l'API publique (ce que les autres peuvent utiliser). Tout ce qui n'est pas

dans cette liste est considéré comme "interne", et les autres développeurs ne devraient pas y toucher.

C'est important pour travailler en équipe : cela évite qu'une personne utilise une fonction temporaire qui va

changer plus tard.

Quand le projet grandit, on va créer des packages : ce sont des dossiers qui contiennent plusieurs modules

liés entre eux (avec un fichier __init__.py dedans). Cela permet de structurer le code en sous-dossiers

logiques. Par exemple : mon_app/models/, mon_app/views/, etc. Il vaut mieux utiliser des imports
absolus (du genre from mon_app.models import User) plutôt que relatifs, c'est plus clair et plus

robuste. Il faut aussi faire attention aux imports circulaires (quand A importe B et B importe A) : cela cause

des bugs difficiles à trouver.

Enfin, il est recommandé d'ajouter toujours un petit commentaire au début du module (une docstring) qui

explique à quoi il sert et donne un exemple d'utilisation. C'est très utile pour se relire plus tard, et pour les

autres développeurs qui vont lire le code. Un bon module, c'est un module qu'on comprend sans avoir à

tout lire.

Exercice 1

On va commencer par la première étape de notre module.



05_modules.md 2025-11-01

2 / 11

Créez un nouveau fichier nommé module_csv.py dans votre espace de travail. Ce fichier représentera

votre premier module personnalisé en Python.

À lʼintérieur, ajoutez la première fonction du module, celle qui permet de créer un dossier vide. Cette

fonction doit utiliser le module standard os, qui sert à interagir avec le système de fichiers (création,

suppression, navigation dans les répertoires, etc.).

Voici la marche à suivre :

�. Importez le module os, car cʼest lui qui fournit la fonction mkdir.
�. Définissez une fonction nommée create_folder qui prend deux paramètres : le chemin du dossier

parent (path) et le nom du dossier à créer (name).
�. À lʼintérieur, construisez le chemin complet en combinant le dossier parent et le nom du dossier avec

os.path.join().
�. Vérifiez si le dossier existe déjà à lʼaide de os.path.exists().
�. Si ce nʼest pas le cas, créez-le avec os.mkdir().

Une fois la fonction écrite, sauvegardez le fichier. On testera ensuite son fonctionnement dans un second

temps pour comprendre comment importer et exécuter une fonction depuis un module.

Correction

# module_csv.py
import os 
 
def create_folder(path, name): 
    chemin = os.path.join(path, name) 
    if not os.path.exists(chemin): 
        os.mkdir(chemin) 

La fonction os.path.join() permet de composer un chemin complet de manière sûre et portable.

Dans lʼexemple :

chemin = os.path.join(path, name) 

on combine deux parties dʼun chemin, le dossier parent (path) et le nom du nouveau dossier (name), en
laissant Python sʼoccuper automatiquement du séparateur de répertoire (/ sur macOS et Linux, \ sur

Windows).

Sans os.path.join(), on serait tenté dʼécrire manuellement quelque chose comme :

chemin = path + '/' + name 
chemin = f"{path}/{name}"

ou encore :



05_modules.md 2025-11-01

3 / 11

chemin = path + '\\' + name 
chemin = f"{path}\{name}"

Mais ces écritures sont fragiles, car elles dépendent du système dʼexploitation utilisé. Sous Windows, le

séparateur est la barre oblique inversée (\), alors que sous macOS et Linux, cʼest la barre oblique (/).

En utilisant os.path.join(), Python choisit automatiquement le bon séparateur pour le système sur

lequel le code sʼexécute. Cela rend votre module multiplateforme et évite de nombreux bugs de chemin

incorrect.

Ainsi, la variable chemin contient ici le chemin complet du dossier à créer, quʼon vérifie ensuite avec

os.path.exists() avant de réellement le créer à lʼaide de os.mkdir(). Cette combinaison assure à la

fois la portabilité et la robustesse de la fonction.

Exercice 2

On va maintenant enrichir notre module module_csv.py en y ajoutant une deuxième fonction :

create_empty_csv_file, qui permettra de créer un fichier CSV vide avec des colonnes bien définies.

Robert C.  Martin, auteur de Coder proprement rappelle que « Si vous devez commenter et dire ce

que fait la fonction, cʼest que vous lʼavez mal nommée ». Autrement dit, le nom dʼune fonction doit

être suffisamment explicite pour que son rôle soit compris sans avoir besoin dʼexplication

supplémentaire. Ici, create_empty_csv_file exprime clairement son intention : créer un fichier

CSV vide.

Étape 1 : Installation de la bibliothèque pandas

Cette fonction utilisera la bibliothèque pandas, très populaire pour la manipulation de tableaux et de

fichiers CSV. Installez-la directement avec la commande suivante :

uv add pandas 

Étape 2 : Recherche personnelle

Avant dʼécrire la fonction, prenez le temps de faire une courte recherche sur les deux points suivants :

�. Comment créer un objet DataFrame vide avec pandas.

�. Comment sauvegarder ce DataFrame dans un fichier CSV à lʼaide de la méthode .to_csv(), tout
en précisant une liste de colonnes.

Vous pouvez consulter la documentation officielle de pandas ou des ressources pédagogiques comme

W3Schools, Real Python ou GeeksforGeeks.

Étape 3 : Implémentation

Une fois ces recherches terminées, ajoutez la fonction dans votre module. Elle devra :



05_modules.md 2025-11-01

4 / 11

recevoir en paramètres le chemin (path) et le nom du fichier (filename) ;
accepter une liste de colonnes à utiliser comme en-tête du CSV ;

vérifier si le fichier existe déjà et que c'est bien un fichier CSV ;

et utiliser pandas.DataFrame puis .to_csv() pour générer le fichier vide.

Cette fonction constituera la base pour les prochaines manipulations de données dans vos exercices.

Correction

Voici une proposition de correction (plusieurs possibilités sont possibles) :

# module_csv.py
import os 
import pandas 
 
... 
 
def create_empty_csv_file(path: str, filename: str, /, *, colonnes: list, 
separator= ','): 
    if not filename.endswith('.csv'): 
        liste = filename.split('.') # exemple ['donnees', 'txt'] 
        filename = liste[0] + '.csv' 
 
    chemin = os.path.join(path, filename) 
    if os.path.exists(chemin): 
        return 
     
    tableau = pandas.DataFrame(columns= colonnes) 
    tableau.to_csv(chemin, sep= separator, index= False) 

La fonction create_empty_csv_file montre plusieurs concepts que nous avons vu dans la première

semaine et de nouveaux concepts à comprendre lorsquʼon travaille avec les fichiers CSV en Python.

Dʼabord, la signature de la fonction :

def create_empty_csv_file(path: str, filename: str, /, *, colonnes: list, 
separator= ','):

Ici, la présence du symbole / indique que les paramètres path et filename doivent être passés

positionnellement, tandis que * impose que colonnes et separator soient passés par mot-clé. Cette

écriture renforce la clarté de lʼappel de fonction et empêche les confusions dʼordre lors de son utilisation.

Par exemple, on devra écrire :

create_empty_csv_file("/Users/votre_nom/Documents", "donnees", colonnes=
["nom", "age"]) 



05_modules.md 2025-11-01

5 / 11

et non en passant tous les arguments de manière positionnelle.

La première partie du corps de la fonction :

if not filename.endswith('.csv'): 
    liste = filename.split('.') 
    filename = liste[0] + '.csv'

sert à garantir que le fichier ait bien lʼextension .csv. On découpe le nom du fichier avec split('.')
pour isoler la partie avant le point (par exemple donnees dans donnees.txt), puis on reconstruit un nom

conforme à lʼattendu (donnees.csv). Cela évite les erreurs dues à des extensions manquantes ou

incorrectes.

Vient ensuite la construction du chemin complet du fichier :

chemin = os.path.join(path, filename) 

Pour assembler le dossier et le nom du fichier de façon compatible avec le système dʼexploitation. On

obtient ainsi un chemin valide quel que soit lʼenvironnement (Windows, macOS ou Linux).

La condition suivante :

if os.path.exists(chemin): 
    return

évite de recréer un fichier qui existe déjà. La fonction sʼinterrompt silencieusement dans ce cas pour

prévenir toute perte de données.

La ligne centrale :

tableau = pandas.DataFrame(columns= colonnes) 

construit un tableau vide avec uniquement les noms de colonnes fournis par lʼutilisateur.

pandas.DataFrame est ici utilisé comme structure temporaire pour générer un fichier CSV vide mais

correctement formaté.

Enfin :

tableau.to_csv(chemin, sep= separator, index= False) 

écrit ce tableau vide dans le fichier CSV. Le paramètre sep permet de choisir le séparateur utilisé entre les

colonnes (par défaut la virgule, mais on pourrait utiliser ; dans certains contextes). Le paramètre



05_modules.md 2025-11-01

6 / 11

index=False empêche pandas dʼajouter une colonne dʼindex automatique.

En somme, cette fonction illustre une conception propre et claire : elle prépare le nom du fichier, vérifie

son existence, crée un DataFrame vide et le sauvegarde au bon endroit.

Son nom explicite, la typage des paramètres et le découpage logique des étapes traduisent lʼesprit prôné

par Robert C. Martin : le code se lit comme une phrase et ne nécessite aucun commentaire superflu pour

être compris.

Exercice 3

On va maintenant passer à la dernière étape de notre module : écrire la fonction write_to_csv.

Cette fois, on nʼutilisera pas pandas, mais la librairie native csv de Python. Elle fait partie de la

bibliothèque standard et permet de lire et dʼécrire dans des fichiers CSV sans dépendance externe.

Avant dʼécrire la fonction, prenez le temps de consulter la documentation officielle ou un site de

référence pour comprendre :

comment ouvrir un fichier avec la fonction open() ;

comment utiliser la classe csv.DictWriter pour écrire des dictionnaires dans un fichier CSV.

Petit rappel : tout comme il faut un stylo pour écrire dans un cahier, il faut préparer un writer pour écrire

dans un fichier CSV. Ce writer saura traduire vos dictionnaires Python en lignes correctement formatées.

Les données à écrire prendront cette forme :

donnees = [ 
    {'id': 1, 'firstname': 'John', 'lastname': 'Doe'}, 
    {'id': 2, 'firstname': 'Alice', 'lastname': 'Smith'}, 
    {'id': 3, 'firstname': 'Bob', 'lastname': 'Johnson'} 
] 

À partir de là, à vous de rédiger la fonction write_to_csv et dʼexpérimenter par vous-même : comment

construire le chemin, ouvrir le fichier, créer le writer et écrire ces données dans votre CSV ?

Correction

def write_to_csv(path: str, filename: str, data: list[dict], colonnes: 
list[str], separator= ','): 
    chemin = os.path.join(path, filename) 
    if not os.path.exists(chemin): 
        return 
     
    with open(chemin, 'a') as fichier: 
        writer = csv.DictWriter(fichier, colonnes, delimiter= separator, 
lineterminator= '\r') 
        writer.writerows(data) 



05_modules.md 2025-11-01

7 / 11

La première partie du code construit le chemin complet du fichier grâce à os.path.join. On vérifie

ensuite que ce fichier existe avec os.path.exists, car on ne veut pas écrire dans un fichier inexistant.

La ligne clé se trouve ici :

writer = csv.DictWriter(fichier, colonnes, delimiter= separator, 
lineterminator= '\r') 

Cette classe DictWriter agit comme un “stylo”  spécialisé pour écrire des dictionnaires dans un fichier

CSV. Chaque clé du dictionnaire correspond à une colonne du fichier.

Ce quʼil faut remarquer, cʼest que fichier et colonnes sont passés sans nom de paramètre, alors que

delimiter et lineterminator sont passés avec leur nom. Cela provient directement de la définition de

la classe csv.DictWriter.

Ici, f et fieldnames (le fichier et la liste de colonnes) sont des paramètres positionnels. Autrement dit,

on doit les fournir dans cet ordre, sans préciser leur nom.

Les autres paramètres comme delimiter, lineterminator ou quotechar font partie des arguments

nommés : ils servent à configurer le comportement du writer (choix du séparateur, fin de ligne, guillemets,

etc.).

writer.writerows(data) parcourt un itérable (liste, tuple, set...) dʼéléments et écrit, pour chacun dʼeux,

une ligne dans le fichier CSV en appelant implicitement writer.writerow(...) à répétition.

Avec un DictWriter, on sʼattend à ce que chaque élément de data soit un dictionnaire dont les clés

correspondent aux noms de colonnes déclarés lors de la construction du writer (fieldnames). Lʼordre des

valeurs écrites suit strictement lʼordre de ces fieldnames, indépendamment de lʼordre des clés dans

chaque dictionnaire, ce qui garantit une structure de fichier stable.

writer.writerows(data) ne produit pas dʼen-tête; si lʼon souhaite écrire la ligne de titres, on utilise

explicitement writer.writeheader() avant lʼappel à writerows. Lʼappel ne renvoie rien de significatif:



05_modules.md 2025-11-01

8 / 11

il écrit dans le flux associé au fichier. Dans le contexte with open(...):, le vidage des buffers et la

fermeture du fichier sont garantis à la sortie du bloc, ce qui scelle sur disque toutes les lignes générées par

lʼitération.

Utilisation du module

À présent que notre module module_csv.py contient plusieurs fonctions réutilisables, create_folder,
create_empty_csv_file, et write_to_csv,, il est temps dʼapprendre à les utiliser dans un autre

fichier.

Lʼidée est de séparer le code fonctionnel (celui quʼon veut réutiliser) du code dʼexécution (celui quʼon

lance). Cʼest un principe fondamental en programmation : un module contient des outils, tandis quʼun fichier

principal, souvent appelé main.py, orchestre ces outils pour accomplir une tâche concrète.

Créer le fichier principal

Dans le même dossier que votre module, créez un nouveau fichier nommé main.py. Ce sera le point

dʼentrée de votre programme, celui que vous exécuterez pour tester vos fonctions.

Importer le module

Pour utiliser les fonctions écrites dans module_csv.py, il faut dʼabord importer le module dans main.py.
Si le fichier est dans le même dossier, on lʼimporte simplement ainsi :

import module_csv 

ou, si lʼon veut accéder directement à certaines fonctions :

from module_csv import create_folder, create_empty_csv_file, write_to_csv 

Les deux approches sont valides : la première est plus explicite (module_csv.create_folder()), la
seconde plus concise (create_folder() directement).

Utiliser les fonctions

Lʼobjectif du fichier main.py est de tester le bon fonctionnement de votre module. On peut par exemple :

�. Créer un dossier nommé data ;

�. Créer un fichier CSV vide à lʼintérieur ;

�. Écrire quelques lignes dans ce fichier.

Voici la logique à mettre en place :

from module_csv import create_folder, create_empty_csv_file, write_to_csv 
 
path = "." 



05_modules.md 2025-11-01

9 / 11

folder_name = "data" 
filename = "personnes.csv" 
colonnes= ['id', 'firstname', 'lastname'] 
 
create_folder(path, folder_name) 
 
create_empty_csv_file( 
    path, 
    filename, 
    colonnes= colonnes 
) 
 
donnees = [ 
    {'id': 1, 'firstname': 'John', 'lastname': 'Doe'}, 
    {'id': 2, 'firstname': 'Alice', 'lastname': 'Smith'}, 
    {'id': 3, 'firstname': 'Bob', 'lastname': 'Johnson'} 
] 
 
write_to_csv( 
    path= folder_name, 
    filename= filename, 
    data= donnees, 
    colonnes= colonnes 
) 

Lʼintérêt de cette séparation

Cette manière de travailler prépare votre code à la réutilisation. Votre module peut maintenant être importé

dans nʼ importe quel projet, sans copier-coller les fonctions. Et main.py devient votre script de test, où

lʼon orchestre les appels pour vérifier que tout fonctionne comme prévu.

Cʼest exactement ainsi quʼon structure des projets professionnels : les modules définissent des

fonctionnalités réutilisables, et le fichier principal sert de point dʼentrée pour exécuter la logique métier du

programme.

Revenons sur l'écriture suivante :

from module_csv import * 

on demande à Python dʼimporter toutes les fonctions,  classes et variables publiques définies dans le

module module_csv. Mais attention : le mot-clé * ne signifie pas “tout sans distinction”. On peut filtrer par

une variable spéciale nommée __all__, si elle est présente dans le module.

Rôle de __all__

Dans notre fichier module_csv.py, on va définir tout en haut du fichier :



05_modules.md 2025-11-01

10 / 11

__all__ = [ 
    'create_folder',  
    'create_empty_csv_file',  
    'write_to_csv' 
] 

Cette liste indique explicitement à Python quelles fonctions seront visibles lors dʼun import global (from
module_csv import *). Ainsi, seules ces trois fonctions seront importées automatiquement. Toutes les
autres fonctions, même si elles existent dans le module, resteront internes et ne seront pas accessibles

depuis lʼextérieur.

Cette technique permet de contrôler lʼ interface publique dʼun module. Autrement dit, on décide quelles

fonctions font partie de son API officielle et lesquelles doivent rester cachées, car elles servent uniquement

à lʼinterne. Cʼest une pratique de conception propre et professionnelle : elle empêche lʼutilisateur du module

dʼutiliser accidentellement une fonction auxiliaire ou expérimentale.

Exemple

Supposons quʼon ait ajouté cette fonction dans le module :

def _sanitize_filename(filename: str) -> str: 
    return filename.strip().replace(' ', '_') 

Le terme "sanitize" est souvent utilisé pour décrire une fonction qui supprime des caractères

spéciaux ou qui normalise un nom de fichier. Une fonction qui nettoie.

Cette fonction est utile uniquement à lʼ intérieur du module pour sʼassurer quʼun nom de fichier est propre

avant sa création. Elle nʼa pas vocation à être utilisée directement par un autre fichier comme main.py.

Le préfixe _ signale aux autres développeurs quʼil sʼagit dʼune fonction privée, réservée à un usage

interne. C'est une convention de programmation classique, mais elle n'est pas obligatoire.

Son utilisation dans le code:

def create_empty_csv_file(path: str, filename: str, /, *, colonnes: list, 
separator= ','): 
    filename = _sanitize_filename(filename) 
    ... 

Si on écrit :

from module_csv import * 



05_modules.md 2025-11-01

11 / 11

alors _sanitize_filename ne sera pas importée, car elle nʼest pas listée dans __all__. Et même sans

cette liste, le préfixe _ signale déjà à Python (et aux autres développeurs) quʼil sʼagit dʼune fonction privée,

réservée à un usage interne.

En résumé

from module_csv import * importe uniquement ce que le module décide de rendre public via

__all__.
__all__ définit la frontière entre lʼinterface publique (ce que lʼutilisateur du module peut utiliser) et

les détails internes (ce que seul le module doit manipuler).

Les fonctions internes comme _sanitize_filename permettent dʼalléger le code principal du

module sans encombrer son interface dʼutilisation.


