05_modules.md 2025-11-01

Les modules

Introduction

Un module, c'est simplement un fichier Python () qui contient du code : des fonctions, des variables,
des constantes, et parfois des classes. L'idée est de regrouper tout ce qui traite du méme sujet dans un
seul fichier, pour pouvoir |'utiliser facilement ailleurs dans le programme en faisant un

Pourquoi est-ce utile ? D'abord, cela rend le code plus clair : au lieu d'avoir tout dans un énorme fichier, on
peut organiser le code par theme. Ensuite, c'est réutilisable : si on a besoin de la méme fonctionnalité dans
un autre projet, on copie simplement le fichier. On peut méme le partager avec d'autres développeurs.

Un module crée ce qu'on appelle un "espace de noms". Concretement, cela signifie que si on a une fonction
dans le module et une autre fonction dans , elles ne vont
pas entrer en conflit. Quand on fait , on sait exactement d'ou vient chaque fonction :
. Cela évite les bugs et rend le code plus facile a comprendre.

Un point important & comprendre : quand on fait pour la premiére fois, Python
exécute tout le code du fichier de haut en bas, puis met le résultat en mémoire (on dit qu'il est "mis en
cache"). Les fois suivantes, Python réutilise ce qui est déja en mémoire. C'est rapide et cela garantit que
tout le monde utilise la méme version. Par contre, attention : tout ce qu'on écrit au niveau principal du
module (pas dans une fonction) va s'exécuter a l'import. |l faut donc éviter de mettre de la logique métier a
ce niveau, et garder juste des définitions de fonctions et de classes.

Dans un module, on a acces a quelques variables spéciales comme , ou

Elles donnent des informations sur le module. On peut aussi définir : c'est une liste qui dit
explicitement ce qui fait partie de I'API publique (ce que les autres peuvent utiliser). Tout ce qui n'est pas
dans cette liste est considéré comme "interne", et les autres développeurs ne devraient pas y toucher.
C'est important pour travailler en équipe : cela évite qu'une personne utilise une fonction temporaire qui va
changer plus tard.

Quand le projet grandit, on va créer des packages : ce sont des dossiers qui contiennent plusieurs modules

liés entre eux (avec un fichier dedans). Cela permet de structurer le code en sous-dossiers
logiques. Par exemple : , , etc. Il vaut mieux utiliser des imports
absolus (du genre) plutot que relatifs, c'est plus clair et plus

robuste. Il faut aussi faire attention aux imports circulaires (quand A importe B et B importe A) : cela cause
des bugs difficiles a trouver.

Enfin, il est recommandé d'ajouter toujours un petit commentaire au début du module (une docstring) qui
explique a quoi il sert et donne un exemple d'utilisation. C'est trés utile pour se relire plus tard, et pour les
autres développeurs qui vont lire le code. Un bon module, c'est un module gu'on comprend sans avoir a
tout lire.

Exercice 1

On va commencer par la premiéere étape de notre module.

1/11

05_modules.md 2025-11-01

Créez un nouveau fichier nommé dans votre espace de travail. Ce fichier représentera

votre premier module personnalisé en Python.

A I'intérieur, ajoutez la premiére fonction du module, celle qui permet de créer un dossier vide. Cette
fonction doit utiliser le module standard 05, qui sert a interagir avec le systéme de fichiers (création,

suppression, navigation dans les répertoires, etc.).
Voici la marche a suivre :

1. Importez le module 05, car c'est lui qui fournit la fonction
2. Définissez une fonction nommée qui prend deux parametres : le chemin du dossier

parent () et le nom du dossier a créer ().
3. Al'intérieur, construisez le chemin complet en combinant le dossier parent et le nom du dossier avec

4. Vérifiez si le dossier existe déja a I'aide de
5. Si ce n'est pas le cas, créez-le avec

Une fois la fonction écrite, sauvegardez le fichier. On testera ensuite son fonctionnement dans un second
temps pour comprendre comment importer et exécuter une fonction depuis un module.

Correction

import os
def create_folder :
chemin = os.path.join(path, name)

if not os.path.exists(chemin):
os.mkdir(chemin)

La fonction permet de composer un chemin complet de maniére siire et portable.

Dans I'exemple :

chemin = os.path.join(path, name)

on combine deux parties d'un chemin, le dossier parent () et le nom du nouveau dossier (), en
laissant Python s'occuper automatiquement du séparateur de répertoire (/ sur macOS et Linux, \ sur
Windows).

Sans , on serait tenté d'écrire manuellement quelque chose comme :

path + '/' + name
f"{path}/{name}"

chemin
chemin

Oou encore :

2/11

05_modules.md 2025-11-01

chemin
chemin

path + "\\' + name
f"{path}\{name}"

Mais ces écritures sont fragiles, car elles dépendent du systéme d’exploitation utilisé. Sous Windows, le
séparateur est la barre oblique inversée (), alors que sous macOS et Linux, c'est la barre oblique (/).

En utilisant , Python choisit automatiquement le bon séparateur pour le systéme sur
lequel le code s'exécute. Cela rend votre module multiplateforme et évite de nombreux bugs de chemin

incorrect.

Ainsi, la variable contient ici le chemin complet du dossier a créer, qu’on vérifie ensuite avec
avant de réellement le créer a I'aide de . Cette combinaison assure ala
fois la portabilité et la robustesse de la fonction.

Exercice 2

On va maintenant enrichir notre module en y ajoutant une deuxieéme fonction :
, qui permettra de créer un fichier CSV vide avec des colonnes bien définies.

Robert C. Martin, auteur de Coder proprement rappelle que « Si vous devez commenter et dire ce
que fait la fonction, c’est que vous I'avez mal nommée ». Autrement dit, le nom d'une fonction doit
étre suffisamment explicite pour que son réle soit compris sans avoir besoin d’'explication
supplémentaire. Ici, exprime clairement son intention : créer un fichier
CSV vide.

Etape 1: Installation de la bibliotheque

Cette fonction utilisera la bibliotheque pandas, trés populaire pour la manipulation de tableaux et de
fichiers CSV. Installez-la directement avec la commande suivante :

uv add pandas

Etape 2 : Recherche personnelle
Avant d'écrire la fonction, prenez le temps de faire une courte recherche sur les deux points suivants :

1. Comment créer un objet vide avec pandas.
2. Comment sauvegarder ce dans un fichier CSV a I'aide de la méthode , tout

en précisant une liste de colonnes.

Vous pouvez consulter la documentation officielle de pandas ou des ressources pédagogiques comme
W3Schools, Real Python ou GeeksforGeeks.

Etape 3 : Implémentation

Une fois ces recherches terminées, ajoutez la fonction dans votre module. Elle devra :

3/11

05_modules.md 2025-11-01

e recevoir en parametres le chemin () et le nom du fichier ();
e accepter une liste de colonnes 3 utiliser comme en-téte du CSV ;

o vérifier sile fichier existe déja et que c'est bien un fichier CSV ;

o et utiliser puis pour générer le fichier vide.

Cette fonction constituera la base pour les prochaines manipulations de données dans vos exercices.
Correction

Voici une proposition de correction (plusieurs possibilités sont possibles) :

module_csv.py
import os
import pandas

def create_empty_csv_file

1 1
’

if not filename.endswith('.csv'):
liste = filename.split('.') # exemple ['donnees', 'txt']
filename = liste[0] + '.csv'

chemin = os.path.join(path, filename)
if os.path.exists(chemin):
return

tableau = pandas.DataFrame(columns= colonnes)
tableau.to_csv(chemin, sep= separator, index=)

La fonction montre plusieurs concepts que nous avons vu dans la premiére
semaine et de nouveaux concepts a comprendre lorsqu’on travaille avec les fichiers CSV en Python.

D’abord, la signature de la fonction :

def create_empty_csv_file

1 1
’

Ici, la présence du symbole / indique que les paramétres et doivent étre passés
positionnellement, tandis que * impose que et soient passés par mot-clé. Cette
écriture renforce la clarté de l'appel de fonction et empéche les confusions d'ordre lors de son utilisation.
Par exemple, on devra écrire :

create_empty_csv_file("/Users/votre_nom/Documents", "donnees", colonnes=
[Ilnomll’ Ilagell])

4/11

05_modules.md 2025-11-01

et non en passant tous les arguments de maniere positionnelle.

La premiere partie du corps de la fonction :

if not filename.endswith('.csv'):
liste = filename.split('.")
filename = liste[0] + '.csv

sert a garantir que le fichier ait bien I'extension . On découpe le nom du fichier avec

pour isoler la partie avant le point (par exemple dans), puis on reconstruit un nom
conforme a l'attendu (). Cela évite les erreurs dues a des extensions manquantes ou
incorrectes.

Vient ensuite la construction du chemin complet du fichier :

chemin = os.path.join(path, filename)

Pour assembler le dossier et le nom du fichier de fagon compatible avec le systéme d’exploitation. On
obtient ainsi un chemin valide quel que soit I'environnement (Windows, macOS ou Linux).

La condition suivante :

if os.path.exists(chemin):
return

évite de recréer un fichier qui existe déja. La fonction s'interrompt silencieusement dans ce cas pour
prévenir toute perte de données.

La ligne centrale :

tableau = pandas.DataFrame(columns= colonnes)

construit un tableau vide avec uniquement les noms de colonnes fournis par I'utilisateur.
est ici utilisé comme structure temporaire pour générer un fichier CSV vide mais
correctement formaté.

Enfin :
tableau.to_csv(chemin, sep= separator, index=)
écrit ce tableau vide dans le fichier CSV. Le paramétre permet de choisir le séparateur utilisé entre les

colonnes (par défaut la virgule, mais on pourrait utiliser ; dans certains contextes). Le parametre

5/11

05_modules.md 2025-11-01

empéche pandas d'ajouter une colonne d'index automatique.

En somme, cette fonction illustre une conception propre et claire : elle prépare le nom du fichier, vérifie
son existence, crée un DataFrame vide et le sauvegarde au bon endroit.

Son nom explicite, la typage des parametres et le découpage logique des étapes traduisent I'esprit préné
par Robert C. Martin : le code se lit comme une phrase et ne nécessite aucun commentaire superflu pour

étre compiris.

Exercice 3
On va maintenant passer a la derniére étape de notre module : écrire la fonction

Cette fois, on n'utilisera pas pandas, mais la librairie native de Python. Elle fait partie de la
bibliotheque standard et permet de lire et d'écrire dans des fichiers CSV sans dépendance externe.

Avant d'écrire la fonction, prenez le temps de consulter la documentation officielle ou un site de

référence pour comprendre :

e comment ouvrir un fichier avec la fonction ;
e comment utiliser la classe pour écrire des dictionnaires dans un fichier CSV.

Petit rappel : tout comme il faut un stylo pour écrire dans un cahier, il faut préparer un writer pour écrire
dans un fichier CSV. Ce writer saura traduire vos dictionnaires Python en lignes correctement formatées.

Les données a écrire prendront cette forme :

donnees = [

{'id': 1, 'firstname': 'John', 'lastname': 'Doe'},
{'id': 2, 'firstname': 'Alice', 'lastname': 'Smith'},
{'id': 3, 'firstname': 'Bob', 'lastname': 'Johnson'}
]
A partir de 13, 4 vous de rédiger la fonction et d'expérimenter par vous-méme : comment

construire le chemin, ouvrir le fichier, créer le writer et écrire ces données dans votre CSV ?

Correction

def write_to_csv

1 1
’

chemin = os.path.join(path, filename)
if not os.path.exists(chemin):
return

with open(chemin, 'a') as fichier:
writer = csv.DictWriter(fichier, colonnes, delimiter= separator,
lineterminator= '\r')
writer.writerows(data)

6/11

05_modules.md 2025-11-01

La premiere partie du code construit le chemin complet du fichier grace a . On vérifie
ensuite que ce fichier existe avec , car on ne veut pas écrire dans un fichier inexistant.

La ligne clé se trouve ici :

writer = csv.DictWriter(fichier, colonnes, delimiter= separator,
lineterminator= '\r"')

Cette classe agit comme un “stylo” spécialisé pour écrire des dictionnaires dans un fichier
CSV. Chaque clé du dictionnaire correspond a une colonne du fichier.

Ce gu'il faut remarquer, c'est que et sont passés sans hom de parameétre, alors que
et sont passés avec leur nom. Cela provient directement de la définition de
la classe

Dictwriter(
f: SupportsWrite[str],
fi Collection[str],
any | None = "",
tion: Literal['raise

: DialectLike

"\r\n",
n, aunting: OuntingTwne = A.
v.DictWriter(fichier, colonnes, delimiter= separator, lineterming

erowsf(datal)

Ici, T et (le fichier et la liste de colonnes) sont des parameétres positionnels. Autrement dit,
on doit les fournir dans cet ordre, sans préciser leur nom.

Les autres parameétres comme , ou font partie des arguments
nommeés : ils servent a configurer le comportement du writer (choix du séparateur, fin de ligne, guillemets,
etc.).

parcourt un itérable (liste, tuple, set...) d'éléments et écrit, pour chacun d'eux,
une ligne dans le fichier CSV en appelant implicitement a répétition.

Avec un , on s'attend a ce que chaque élément de soit un dictionnaire dont les clés
correspondent aux noms de colonnes déclarés lors de la construction du writer (). L'ordre des
valeurs écrites suit strictement I'ordre de ces , indépendamment de l'ordre des clés dans
chaque dictionnaire, ce qui garantit une structure de fichier stable.

ne produit pas d'en-téte; si I'on souhaite écrire la ligne de titres, on utilise
explicitement avant l'appel a . L'appel ne renvoie rien de significatif:

7/11

05_modules.md 2025-11-01

il écrit dans le flux associé au fichier. Dans le contexte , le vidage des buffers et la
fermeture du fichier sont garantis a la sortie du bloc, ce qui scelle sur disque toutes les lignes générées par
I'itération.

Utilisation du module

A présent que notre module contient plusieurs fonctions réutilisables, ,
, et .. il est temps d'apprendre a les utiliser dans un autre
fichier.

L'idée est de séparer le code fonctionnel (celui qu'on veut réutiliser) du code d'exécution (celui qu'on
lance). C'est un principe fondamental en programmation : un module contient des outils, tandis qu'un fichier
principal, souvent appelé , orchestre ces outils pour accomplir une tache concreéte.

Créer le fichier principal

Dans le méme dossier que votre module, créez un nouveau fichier nommé . Ce sera le point

d'entrée de votre programme, celui que vous exécuterez pour tester vos fonctions.
Importer le module

Pour utiliser les fonctions écrites dans , il faut d'abord importer le module dans
Si le fichier est dans le méme dossier, on I'importe simplement ainsi :

import module_csv

ou, sil'on veut accéder directement a certaines fonctions :

from module_csv import create_folder, create_empty_csv_file, write_to_csv

Les deux approches sont valides : la premiéere est plus explicite (), la
seconde plus concise (directement).

Utiliser les fonctions

L'objectif du fichier est de tester le bon fonctionnement de votre module. On peut par exemple :

1. Créer un dossier nommé data ;
2. Créer un fichier CSV vide a l'intérieur ;
3. Ecrire quelques lignes dans ce fichier.

Voici la logique a mettre en place :

from module_csv import create_folder, create_empty_csv_file, write_to_csv
path — II.II

8/11

05_modules.md 2025-11-01

folder_name = "data"
filename = "personnes.csv"
colonnes= ['id', 'firstname', 'lastname']

create_folder(path, folder_name)
create_empty_csv_file(
path,

filename,
colonnes= colonnes

donnees = [

{'id': 1, 'firstname': 'John', 'lastname': 'Doe'},
{'id': 2, 'firstname': 'Alice', 'lastname': 'Smith'},
{'id': 3, 'firstname': 'Bob', 'lastname': 'Johnson'}

write_to_csv(
path= folder_name,
filename= filename,
data= donnees,
colonnes= colonnes

L'intérét de cette séparation

Cette maniere de travailler prépare votre code a la réutilisation. Votre module peut maintenant étre importé
dans n'importe quel projet, sans copier-coller les fonctions. Et devient votre script de test, ou
I'on orchestre les appels pour vérifier que tout fonctionne comme prévu.

C'est exactement ainsi qu'on structure des projets professionnels : les modules définissent des
fonctionnalités réutilisables, et le fichier principal sert de point d'entrée pour exécuter la logique métier du

programme.

Revenons sur I'écriture suivante :

from module_csv import *

on demande a Python d'importer toutes les fonctions, classes et variables publiques définies dans le

module . Mais attention : le mot-clé * ne signifie pas “tout sans distinction”. On peut filtrer par
une variable spéciale nommée , si elle est présente dans le module.
Réle de

Dans notre fichier , on va définir tout en haut du fichier :

9/11

05_modules.md 2025-11-01

all =1
'create_folder',
'create_empty_csv_file',
'write to_csv'

Cette liste indigue explicitement a Python quelles fonctions seront visibles lors d'un import global (

). Ainsi, seules ces trois fonctions seront importées automatiquement. Toutes les
autres fonctions, méme si elles existent dans le module, resteront internes et ne seront pas accessibles
depuis l'extérieur.

Cette technique permet de controler I'interface publique d'un module. Autrement dit, on décide quelles
fonctions font partie de son API officielle et lesquelles doivent rester cachées, car elles servent uniquement
a l'interne. C'est une pratique de conception propre et professionnelle : elle empéche l'utilisateur du module
d'utiliser accidentellement une fonction auxiliaire ou expérimentale.

Exemple

Supposons qu'on ait ajouté cette fonction dans le module :

def _sanitize_filename -> str:
return filename.strip().replace(' ', '_")

Le terme "sanitize" est souvent utilisé pour décrire une fonction qui supprime des caractéeres
spéciaux ou qui normalise un nom de fichier. Une fonction qui nettoie.

Cette fonction est utile uniquement a I'intérieur du module pour s'assurer qu'un nom de fichier est propre

avant sa création. Elle n'a pas vocation a étre utilisée directement par un autre fichier comme

Le préfixe signale aux autres développeurs qu'il s'agit d'une fonction privée, réservée a un usage
interne. C'est une convention de programmation classique, mais elle n'est pas obligatoire.

Son utilisation dans le code:

def create_empty_csv_file

1 1
’ "

filename = _sanitize_filename(filename)

Sion écrit :

from module_csv import *

10/11

05_modules.md 2025-11-01

alors ne sera pas importée, car elle n'est pas listée dans . Et méme sans
cette liste, le préfixe _signale déja a Python (et aux autres développeurs) qu'il s'agit d'une fonction privée,
réservée a un usage interne.

En résumé

. importe uniquement ce que le module décide de rendre public via

. définit la frontiére entre l'interface publique (ce que l'utilisateur du module peut utiliser) et
les détails internes (ce que seul le module doit manipuler).

e Les fonctions internes comme permettent d'alléger le code principal du
module sans encombrer son interface d'utilisation.

11/11

