09_manipulation_dates.md 2025-10-07

Manipulation de dates

Le module datetime de Python est essentiel pour manipuler les dates, les heures et les durées. Il regroupe
plusieurs classes permettant de représenter, comparer, formater ou calculer des valeurs temporelles avec
une grande précision. Il est souvent utilisé dans les applications ou la gestion du temps est importante,

comme les journaux d'événements, les planifications ou les statistiques temporelles.

from datetime import date, time, datetime, timedelta
import pytz

La classe date représente une date composée de I'année, du mois et du jour. Par exemple,

crée un objet correspondant au 1er janvier 2024. La méthode renvoie la date du jour
selon le systéme local. Ces objets permettent aussi des calculs : on peut leur ajouter ou soustraire un
intervalle de temps pour obtenir une autre date.

Créer une instance de date représentant le ler janvier 2024
date_2024 = date(, 1, 1)
print(f"Date créée : {date_2024}")

Récupérer la date d'aujourd'hui et 1'afficher

date_aujourdhui = date.today()
print(f"Date d'aujourd'hui : {date_aujourdhuil}")

La classe time représente uniqguement une heure (heures, minutes, secondes et microsecondes), sans

notion de jour. Ainsi, correspond a 14h30 et 45 secondes. Pour obtenir I'heure
actuelle, on utilise . Il est possible d'accéder séparément aux attributs comme
, ou

Créer une instance de time représentant 14h30 et 45 secondes
temps = time(14, ,)
print(f"Temps créé : {temps}")

La classe datetime combine a la fois une date et une heure. C'est I'objet le plus complet du module car il
permet de manipuler un instant précis. Par exemple, représente le 17
mai 2024 a 15h30. Cet objet peut étre converti en texte grace a la méthode , ou reconstruit a
partir d'une chaine grace a . Dans I'exemple, est converti en objet date avec le
format , qui suit la norme ISO 8601 — un standard international garantissant la cohérence
d'écriture des dates et heures dans le format pour les dates et pour les heures.

heure_actuelle = datetime.now().time()
print(f"Heure actuelle : {heure_actuelle.hour}h {heure_actuelle.minute}m
{heure_actuelle.second}s")

1/3

09_manipulation_dates.md 2025-10-07

Convertir la chaine '"2024-10-14" en un objet date
date_chaine = datetime.strptime('2024-10-14", "%Y-%m-%d").date()
print(f"Date convertie : {date_chaine}")

Convertir la chaine "31-12-2024" (format DD-MM-YYYY)
date_chaine_ddmm = datetime.strptime("31-12-2024", "%d-%m-%Y").date()
print(f"Date convertie (format DD-MM-YYYY) : {date_chaine_ddmm}")

La classe timedelta représente une durée, c'est-a-dire la différence entre deux dates ou heures. Par
exemple, désigne un intervalle de 45 jours. On peut ainsi calculer une date future :

donnera la date dans 45 jours. Le méme principe s'applique
pour calculer un nombre de jours entre deux dates en soustrayant deux objets , comme dans la
différence entre le 1er et le 10 mars 2020 a Montréal.

Calculer la date 45 jours aprés aujourd'hui
delta_45_jours = date.today() + timedelta(days=45)
print(f"Date apres 45 jours : {delta_45_jours}")

Créer deux objets datetime pour le ler mars 2020 et le 10 mars 2020 a
Montréal

montreal_tz = pytz.timezone('America/Montreal')

date_debut = datetime(2020, 3, 1, 15, 0, tzinfo=montreal_tz)
date_fin = datetime(2020, 3, 10, 15, 0, tzinfo=montreal_tz)

difference = date_fin - date_debut
print(f"Nombre de jours entre les deux dates : {difference.days}")

La classe tzinfo geére les fuseaux horaires. Python ne contient pas en standard la base compléte des zones
mondiales, mais le module externe permet d'utiliser des zones telles que ou

. En créant des objets avec ces zones, on peut afficher simultanément I'heure
actuelle a Paris et a Tokyo, ce qui est crucial pour les applications internationales.

Créer un objet datetime pour 1'heure actuelle a Paris et Tokyo
paris_tz = pytz.timezone('Europe/Paris')
tokyo_tz = pytz.timezone('Asia/Tokyo")

heure_actuelle_paris
heure_actuelle_tokyo

datetime.now(paris_tz)
datetime.now(tokyo_tz)

print(f"Heure actuelle a Paris : {heure_actuelle_paris}")
print(f"Heure actuelle a Tokyo : {heure_actuelle_tokyo}")

Enfin, la bibliothéque dateutil, et plus particulierement son objet , compléte le module en
permettant des calculs plus complexes, comme l'ajout de mois ou d'années entiéres. Par exemple, ajouter

2/3

09_manipulation_dates.md 2025-10-07

deux mois a la date du 1er février 2024 donne le 1er avril 2024, calcul qu'un simple ne pourrait
pas faire puisqu'il ne connait pas la longueur des mois.

Créer une date représentant le ler février 2024, puis ajouter 2 mois
date_fevrier = datetime(, 2, 1)

date_ajoutee = date_fevrier + relativedelta(months=2)
print(f"Date apres ajout de 2 mois : {date_ajouteel}")

Ainsi, le module forme une base solide pour tout travail temporel en Python. Il permet
d'exprimer, convertir et comparer les dates et heures avec précision, tout en respectant les conventions
internationales pour garantir la cohérence et l'interopérabilité des données temporelles.

3/3

