
09_manipulation_dates.md 2025-10-07

1 / 3

Manipulation de dates

Le module datetime de Python est essentiel pour manipuler les dates, les heures et les durées. Il regroupe

plusieurs classes permettant de représenter, comparer, formater ou calculer des valeurs temporelles avec

une grande précision. Il est souvent utilisé dans les applications où la gestion du temps est importante,

comme les journaux dʼévénements, les planifications ou les statistiques temporelles.

from datetime import date, time, datetime, timedelta
import pytz

La classe date représente une date composée de lʼannée, du mois et du jour. Par exemple, date(2024,
1, 1) crée un objet correspondant au 1er janvier 2024. La méthode date.today() renvoie la date du jour

selon le système local. Ces objets permettent aussi des calculs : on peut leur ajouter ou soustraire un

intervalle de temps pour obtenir une autre date.

Créer une instance de date représentant le 1er janvier 2024
date_2024 = date(2024, 1, 1)
print(f"Date créée : {date_2024}")

Récupérer la date d'aujourd'hui et l'afficher
date_aujourdhui = date.today()
print(f"Date d'aujourd'hui : {date_aujourdhui}")

La classe time représente uniquement une heure (heures, minutes, secondes et microsecondes), sans

notion de jour. Ainsi, time(14, 30, 45) correspond à 14h30 et 45 secondes. Pour obtenir lʼheure

actuelle, on utilise datetime.now().time(). Il est possible dʼaccéder séparément aux attributs comme

hour, minute ou second.

Créer une instance de time représentant 14h30 et 45 secondes
temps = time(14, 30, 45)
print(f"Temps créé : {temps}")

La classe datetime combine à la fois une date et une heure. Cʼest lʼobjet le plus complet du module car il

permet de manipuler un instant précis. Par exemple, datetime(2024, 5, 17, 15, 30) représente le 17

mai 2024 à 15h30. Cet objet peut être converti en texte grâce à la méthode strftime, ou reconstruit à

partir dʼune chaîne grâce à strptime. Dans lʼexemple, "2024-10-14" est converti en objet date avec le

format "%Y-%m-%d", qui suit la norme ISO 8601 — un standard international garantissant la cohérence

dʼécriture des dates et heures dans le format YYYY-MM-DD pour les dates et HH:MM:SS pour les heures.

heure_actuelle = datetime.now().time()
print(f"Heure actuelle : {heure_actuelle.hour}h {heure_actuelle.minute}m
{heure_actuelle.second}s")

09_manipulation_dates.md 2025-10-07

2 / 3

Convertir la chaîne "2024-10-14" en un objet date
date_chaine = datetime.strptime("2024-10-14", "%Y-%m-%d").date()
print(f"Date convertie : {date_chaine}")

Convertir la chaîne "31-12-2024" (format DD-MM-YYYY)
date_chaine_ddmm = datetime.strptime("31-12-2024", "%d-%m-%Y").date()
print(f"Date convertie (format DD-MM-YYYY) : {date_chaine_ddmm}")

La classe timedelta représente une durée, cʼest-à-dire la différence entre deux dates ou heures. Par

exemple, timedelta(days=45) désigne un intervalle de 45 jours. On peut ainsi calculer une date future :

date.today() + timedelta(days=45) donnera la date dans 45 jours. Le même principe sʼapplique

pour calculer un nombre de jours entre deux dates en soustrayant deux objets datetime, comme dans la

différence entre le 1er et le 10 mars 2020 à Montréal.

Calculer la date 45 jours après aujourd'hui
delta_45_jours = date.today() + timedelta(days=45)
print(f"Date après 45 jours : {delta_45_jours}")

Créer deux objets datetime pour le 1er mars 2020 et le 10 mars 2020 à
Montréal
montreal_tz = pytz.timezone('America/Montreal')

date_debut = datetime(2020, 3, 1, 15, 0, tzinfo=montreal_tz)
date_fin = datetime(2020, 3, 10, 15, 0, tzinfo=montreal_tz)

difference = date_fin - date_debut
print(f"Nombre de jours entre les deux dates : {difference.days}")

La classe tzinfo gère les fuseaux horaires. Python ne contient pas en standard la base complète des zones

mondiales, mais le module externe pytz permet dʼutiliser des zones telles que 'Europe/Paris' ou

'Asia/Tokyo'. En créant des objets datetime avec ces zones, on peut afficher simultanément lʼheure

actuelle à Paris et à Tokyo, ce qui est crucial pour les applications internationales.

Créer un objet datetime pour l'heure actuelle à Paris et Tokyo
paris_tz = pytz.timezone('Europe/Paris')
tokyo_tz = pytz.timezone('Asia/Tokyo')

heure_actuelle_paris = datetime.now(paris_tz)
heure_actuelle_tokyo = datetime.now(tokyo_tz)

print(f"Heure actuelle à Paris : {heure_actuelle_paris}")
print(f"Heure actuelle à Tokyo : {heure_actuelle_tokyo}")

Enfin, la bibliothèque dateutil, et plus particulièrement son objet relativedelta, complète le module en

permettant des calculs plus complexes, comme lʼajout de mois ou dʼannées entières. Par exemple, ajouter

09_manipulation_dates.md 2025-10-07

3 / 3

deux mois à la date du 1er février 2024 donne le 1er avril 2024, calcul quʼun simple timedelta ne pourrait

pas faire puisquʼil ne connaît pas la longueur des mois.

Créer une date représentant le 1er février 2024, puis ajouter 2 mois
date_fevrier = datetime(2024, 2, 1)
date_ajoutee = date_fevrier + relativedelta(months=2)
print(f"Date après ajout de 2 mois : {date_ajoutee}")

Ainsi, le module datetime forme une base solide pour tout travail temporel en Python. Il permet

dʼexprimer, convertir et comparer les dates et heures avec précision, tout en respectant les conventions

internationales pour garantir la cohérence et lʼinteropérabilité des données temporelles.

