
10_manipulation_fichiers.md 2025-10-07

1 / 4

La manipulation de fichiers

En Python, la manipulation de fichiers repose sur la fonction intégrée open(), qui permet dʼouvrir un fichier

et de choisir le mode dʼaccès (lecture, écriture, ajout, etc.). Lʼouverture dʼun fichier se fait souvent avec le

mot-clé with, qui garantit la fermeture automatique du fichier, même en cas dʼerreur.

chemin = r"/Users/VotreNom/Documents/mon_fichier.txt"
print(f"Chemin du fichier : {chemin}")

Ouvrir un fichier en mode écriture et y écrire trois lignes de texte
with open(chemin, 'w') as fichier:
 fichier.write("Ligne 1 : Ceci est la première ligne.\n")
 fichier.write("Ligne 2 : Ceci est la deuxième ligne.\n")
 fichier.write("Ligne 3 : Ceci est la troisième ligne.\n")

Ici, le mode 'w' signifie « écriture ». Sʼil existe déjà un fichier à cet emplacement, son contenu est écrasé.

Ensuite, on peut lire le contenu avec le mode 'r' :

Ouvrir le fichier en mode lecture
with open(chemin, 'r') as fichier:
 contenu = fichier.read()
 print("Contenu du fichier :")
 print(contenu)

La méthode read() lit tout le fichier en une seule fois. Si lʼon souhaite lire ligne par ligne, on utilise

readlines() qui renvoie une liste :

with open(chemin, 'r') as fichier:
 lignes = fichier.readlines()
 print("Liste des lignes :")
 print(lignes)

Le curseur de lecture se déplace automatiquement pendant la lecture. On peut le repositionner au début du

fichier grâce à seek(0) :

with open(chemin, 'r') as fichier:
 fichier.seek(0) # Remet le curseur au début
 contenu = fichier.read()
 print("Contenu après repositionnement du curseur :")
 print(contenu)

On peut aussi lire seulement une portion du fichier, par exemple les dix premiers caractères :

10_manipulation_fichiers.md 2025-10-07

2 / 4

with open(chemin, 'r') as fichier:
 fichier.seek(0)
 premiers_caracteres = fichier.read(10)
 print(f"Les 10 premiers caractères : {premiers_caracteres}")

Cette capacité de lecture partielle est utile pour le traitement de gros fichiers.

Sérialisation et désérialisation

La sérialisation et la désérialisation sont deux notions essentielles en informatique, qui permettent de

faire circuler et de sauvegarder des données de manière durable ou transportable.

En Python, elles sont particulièrement importantes dès quʼon souhaite conserver lʼétat dʼun programme,

échanger des informations entre systèmes ou enregistrer des données dʼun projet (comme dans le TP de

gestion des patients du syllabus).

Quʼest-ce que la sérialisation ?

La sérialisation consiste à convertir un objet Python en une suite de caractères ou dʼoctets pouvant être

enregistrée dans un fichier, envoyée sur un réseau ou stockée dans une base de données.

Lʼidée est simple : un objet Python (dictionnaire, liste, classe, etc.) existe seulement en mémoire pendant

lʼexécution du programme. Si le programme sʼarrête, ces objets disparaissent. Pour les conserver, il faut les

transformer dans un format pérenne (texte ou binaire).

Prenons un exemple :

import json

settings = {
 "fontsize": 12,
 "theme": "dark",
 "autosave": True
}

Sérialisation : conversion du dictionnaire Python en chaîne JSON
chaine_json = json.dumps(settings, indent=4)
print(chaine_json)

Résultat affiché dans le terminal :

{
 "fontsize": 12,
 "theme": "dark",
 "autosave": true
}

10_manipulation_fichiers.md 2025-10-07

3 / 4

Ici, json.dumps() (le « s » de string) transforme le dictionnaire en une chaîne JSON. Cette chaîne peut

ensuite être écrite dans un fichier pour être conservée :

with open('settings.json', 'w') as fichier_json:
 json.dump(settings, fichier_json, indent=4)

Le fichier settings.json contient maintenant une version textuelle du dictionnaire Python. On dit que

lʼobjet a été sérialisé dans un format standard, compréhensible par dʼautres langages (JavaScript, Java,

etc.), ce qui facilite lʼéchange de données entre programmes hétérogènes.

Quʼest-ce que la désérialisation ?

La désérialisation est lʼopération inverse. Elle consiste à reconstruire un objet Python à partir dʼune

représentation stockée ou transmise.

Ainsi, lorsquʼon relit le fichier settings.json, Python doit convertir le texte du fichier (le JSON) en

véritable dictionnaire Python.

Désérialisation : lecture et reconstruction de l'objet Python
with open('settings.json', 'r') as fichier_json:
 settings = json.load(fichier_json)

print(settings)

Résultat :

{'fontsize': 12, 'theme': 'dark', 'autosave': True}

Lʼobjet settings est à nouveau un dictionnaire Python utilisable dans le programme. Autrement dit, la

désérialisation ramène à la vie les objets enregistrés.

Pourquoi utiliser la sérialisation ?

La sérialisation intervient dans de nombreux contextes :

�. Sauvegarde de lʼétat dʼune application Exemple : un jeu qui sauvegarde la progression du joueur

dans un fichier JSON.

�. Communication entre programmes Par exemple, un serveur web écrit en Python peut envoyer des

données JSON à un client JavaScript.

�. Stockage temporaire dans un fichier ou cache Certaines applications sauvegardent leurs

paramètres, préférences ou résultats dans un format sérialisé.

�. Transfert de données sur un réseau Les API REST échangent presque toujours des données au

format JSON, qui est le fruit dʼune sérialisation.

10_manipulation_fichiers.md 2025-10-07

4 / 4

Autres formats possibles

Bien que JSON soit le format le plus courant (lisible par lʼhumain, simple à manipuler), Python propose

dʼautres méthodes selon les besoins :

Pickle Le module pickle permet de sérialiser des objets Python plus complexes (comme des

classes, fonctions, etc.). Cependant, il ne doit jamais être utilisé avec des données non fiables, car il

peut exécuter du code arbitraire lors de la désérialisation.

Exemple :

import pickle

data = {"nom": "Dupont", "age": 35}
with open('data.pkl', 'wb') as fichier:
 pickle.dump(data, fichier) # Sérialisation binaire

with open('data.pkl', 'rb') as fichier:
 donnees = pickle.load(fichier) # Désérialisation
 print(donnees)

CSV Pour des données tabulaires (listes ou tableaux), le format CSV (Comma-Separated Values) est

souvent utilisé. On peut le lire et lʼécrire facilement avec le module csv.

YAML, XML, Avro, Protobuf Utilisés dans des contextes spécifiques (configuration, interopérabilité,

systèmes distribués).

