10_manipulation_fichiers.md 2025-10-07

La manipulation de fichiers

En Python, la manipulation de fichiers repose sur la fonction intégrée , qui permet d'ouvrir un fichier
et de choisir le mode d'accés (lecture, écriture, ajout, etc.). L'ouverture d'un fichier se fait souvent avec le
mot-clé , qui garantit la fermeture automatique du fichier, méme en cas d'erreur.

chemin = r'"/Users/VotreNom/Documents/mon_fichier.txt"
print(f"Chemin du fichier : {chemin}")

Ouvrir un fichier en mode écriture et y écrire trois lignes de texte
with open(chemin, 'w') as fichier:
fichier.write("Ligne 1 : Ceci est la premiere ligne.\n")
fichier.write('"Ligne 2 : Ceci est la deuxieme ligne.\n")
fichier.write("Ligne 3 : Ceci est la troisieme ligne.\n")

Ici, le mode signifie « écriture ». S'il existe déja un fichier a cet emplacement, son contenu est écrasé.

Ensuite, on peut lire le contenu avec le mode

Ouvrir le fichier en mode lecture

with open(chemin, 'r') as fichier:
contenu = fichier.read()
print("Contenu du fichier :")
print(contenu)

La méthode lit tout le fichier en une seule fois. Si I'on souhaite lire ligne par ligne, on utilise

qui renvoie une liste :

with open(chemin, 'r') as fichier:
lignes = fichier.readlines()
print("Liste des lignes :")
print(lignes)

Le curseur de lecture se déplace automatiquement pendant la lecture. On peut le repositionner au début du

fichier grace a

with open(chemin, 'r') as fichier:
fichier.seek(0) # Remet le curseur au début
contenu = fichier.read()
print("Contenu aprés repositionnement du curseur :")

print(contenu)

On peut aussi lire seulement une portion du fichier, par exemple les dix premiers caracteres :

1/4

10_manipulation_fichiers.md 2025-10-07

with open(chemin, 'r') as fichier:
fichier.seek(0)
premiers_caracteres = fichier.read(10)
print(f"Les 10 premiers caracteres : {premiers_caracteres}")

Cette capacité de lecture partielle est utile pour le traitement de gros fichiers.

Sérialisation et désérialisation

La sérialisation et la désérialisation sont deux notions essentielles en informatique, qui permettent de
faire circuler et de sauvegarder des données de maniere durable ou transportable.

En Python, elles sont particulierement importantes dés qu'on souhaite conserver I'état d'un programme,
échanger des informations entre systémes ou enregistrer des données d’'un projet (comme dans le TP de
gestion des patients du syllabus).

Qu'est-ce que la sérialisation ?

La sérialisation consiste a convertir un objet Python en une suite de caractéres ou d'octets pouvant étre

enregistrée dans un fichier, envoyée sur un réseau ou stockée dans une base de données.

L'idée est simple : un objet Python (dictionnaire, liste, classe, etc.) existe seulement en mémoire pendant
I'exécution du programme. Si le programme s'arréte, ces objets disparaissent. Pour les conserver, il faut les
transformer dans un format pérenne (texte ou binaire).

Prenons un exemple :

import json

settings = {
"fontsize":)
"theme": "dark",
"autosave":

}

Sérialisation : conversion du dictionnaire Python en chaine JSON
chaine_json = json.dumps(settings, indent=4)
print(chaine_json)

Résultat affiché dans le terminal :

{
"fontsize": 12,
"theme": "dark",
"autosave'": true
}

2/4

10_manipulation_fichiers.md 2025-10-07

Ici, (le « s » de string) transforme le dictionnaire en une chaine JSON. Cette chaine peut
ensuite étre écrite dans un fichier pour étre conservée :

with open('settings.json', 'w') as fichier_json:
json.dump(settings, fichier_json, indent=4)

Le fichier contient maintenant une version textuelle du dictionnaire Python. On dit que
I'objet a été sérialisé dans un format standard, compréhensible par d'autres langages (JavaScript, Java,
etc.), ce qui facilite I'échange de données entre programmes hétérogénes.

Qu'est-ce que la désérialisation ?

La désérialisation est 'opération inverse. Elle consiste a reconstruire un objet Python a partir d'une
représentation stockée ou transmise.

Ainsi, lorsqu’on relit le fichier , Python doit convertir le texte du fichier (le JSON) en
véritable dictionnaire Python.

with open('settings.json', 'r') as fichier_json:
settings = json.load(fichier_json)

print(settings)
Résultat :
{'fontsize': 12, 'theme': 'dark', ‘'autosave': True}
L'objet est a nouveau un dictionnaire Python utilisable dans le programme. Autrement dit, la

désérialisation raméne ala vie les objets enregistrés.
Pourquoi utiliser la sérialisation ?

La sérialisation intervient dans de nombreux contextes :

1. Sauvegarde de I'état d'une application Exemple : un jeu qui sauvegarde la progression du joueur
dans un fichier JSON.

2. Communication entre programmes Par exemple, un serveur web écrit en Python peut envoyer des
données JSON a un client JavaScript.

3. Stockage temporaire dans un fichier ou cache Certaines applications sauvegardent leurs
paramétres, préférences ou résultats dans un format sérialisé.

4. Transfert de données sur un réseau Les API REST échangent presque toujours des données au
format JSON, qui est le fruit d'une sérialisation.

3/4

10_manipulation_fichiers.md 2025-10-07

Autres formats possibles

Bien que JSON soit le format le plus courant (lisible par I'humain, simple a manipuler), Python propose
d'autres méthodes selon les besoins :

¢ Pickle Le module permet de sérialiser des objets Python plus complexes (comme des
classes, fonctions, etc.). Cependant, il ne doit jamais étre utilisé avec des données non fiables, car il
peut exécuter du code arbitraire lors de la désérialisation.

Exemple :

import pickle

data = {"nom": "Dupont", "age": }
with open('data.pkl', 'wb') as fichier:
pickle.dump(data, fichier) # Sérialisation binaire

with open('data.pkl', 'rb') as fichier:

donnees = pickle.load(fichier) # Désérialisation
print(donnees)

e CSV Pour des données tabulaires (listes ou tableaux), le format CSV (Comma-Separated Values) est
souvent utilisé. On peut le lire et I'écrire facilement avec le module

e YAML, XML, Avro, Protobuf Utilisés dans des contextes spécifiques (configuration, interopérabilité,
systemes distribués).

474

