
01_poo.md 2025-11-01

1 / 16

La Programmation Orientée Objet

Introduction

Dans les débuts de lʼinformatique, les programmes étaient écrits de manière linéaire : une suite

dʼinstructions exécutées les unes après les autres. Cette approche fonctionnait bien pour des programmes

courts, mais à mesure que les logiciels sont devenus plus gros et plus complexes, elle a montré ses limites.

Les développeurs avaient de plus en plus de mal à organiser leur code, à le maintenir et à le faire évoluer

sans tout casser.

Cʼest dans ce contexte, vers les années 1960, que la programmation orientée objet est apparue. Lʼidée était

de mieux représenter les éléments dʼun programme en sʼinspirant du monde réel. Plutôt que dʼécrire des

suites dʼinstructions, on a commencé à créer des objets : de petites unités regroupant à la fois des

données (leurs caractéristiques) et des comportements (leurs actions).

Cette nouvelle façon de penser le code a permis de résoudre plusieurs problèmes importants :

le code est plus facile à comprendre, car chaque objet représente une idée concrète ;

il devient plus simple de réutiliser certaines parties du programme ;

la maintenance et les évolutions sont plus faciles, car on peut modifier un objet sans casser le reste.

Le concept dʼobjet est apparu pour la première fois avec le langage Simula, développé entre 1962 et 1967

par Ole-Johan Dahl et Kristen Nygaard à lʼInstitut norvégien de calcul dʼOslo. Ce langage avait été

imaginé à lʼorigine pour faciliter la simulation de systèmes complexes, comme ceux quʼon trouve dans

lʼindustrie ou la recherche scientifique.

Simula introduisait deux idées fondamentales : la classe et lʼobjet. Grâce à ces notions, il devenait possible

de regrouper au même endroit les données (ce quʼun objet possède) et les comportements (ce quʼil sait

faire). Cette approche a profondément changé la manière de concevoir les programmes, car elle permettait

de créer un lien plus clair entre le monde réel et sa représentation informatique.

Les objets pouvaient ainsi contenir leur propre état interne et les opérations capables de le modifier.

Chaque objet devenait une unité indépendante et cohérente, capable de collaborer avec dʼautres sans que

leurs fonctionnements internes soient mélangés.

Dans les années 1970, les idées introduites par Simula se sont largement diffusées grâce à lʼapparition de

Smalltalk, un langage développé au centre de recherche Xerox PARC par Alan Kay, Dan Ingalls et Adele

Goldberg. Smalltalk fut le premier langage à appliquer de manière complète la programmation orientée

objet : tout y était considéré comme un objet capable dʼéchanger des messages avec dʼautres objets.

Cette approche, à la fois radicale et élégante, montrait quʼun programme pouvait être conçu entièrement

autour dʼinteractions entre objets. Elle posait les bases dʼun modèle clair et unifié qui allait influencer

durablement la conception des langages de programmation.

Smalltalk donna sa forme la plus aboutie aux notions dʼhéritage, de polymorphisme et dʼencapsulation,

trois piliers de la programmation orientée objet. Ces principes permirent dʼécrire des programmes plus

souples, mieux structurés et plus proches de la logique du monde réel.

01_poo.md 2025-11-01

2 / 16

La programmation orientée objet répondait à plusieurs besoins essentiels du développement logiciel

moderne. Elle offrait avant tout une façon efficace de gérer la complexité en découpant les programmes en

petites entités autonomes, plus faciles à comprendre et à modifier. Cette organisation rendait le code plus

clair et plus simple à maintenir au fil du temps.

Grâce à lʼencapsulation, chaque objet pouvait protéger ses données internes en ne montrant à lʼextérieur

que ce qui était nécessaire. Les autres parties du programme interagissaient ainsi avec lui uniquement par

des interfaces claires, sans dépendre de son fonctionnement interne.

Le principe dʼhéritage permettait, quant à lui, de réutiliser le code déjà existant. Une nouvelle classe

pouvait hériter des caractéristiques dʼune autre et les compléter sans tout réécrire, ce qui évitait la

duplication et assurait une meilleure cohérence dans lʼensemble du programme.

Enfin, le polymorphisme apportait une grande souplesse : il devenait possible de manipuler différents

types dʼobjets de la même manière, tant quʼils partageaient un même comportement. Cela rendait les

programmes plus flexibles, plus évolutifs et plus faciles à adapter aux changements futurs.

Lʼadoption progressive de la programmation orientée objet dans lʼindustrie sʼexplique aussi par la façon

dont elle facilite le travail en équipe. En définissant des interfaces précises et en séparant clairement les

responsabilités de chaque composant, plusieurs développeurs peuvent collaborer sur un même projet

sans se gêner mutuellement. Chacun peut se concentrer sur une partie spécifique du système, en ayant la

garantie que son code interagit correctement avec celui des autres grâce aux contrats établis entre les

objets.

Cette modularité naturelle est particulièrement précieuse dans les projets de grande taille, où la

coordination entre équipes est souvent complexe. En structurant le code en modules indépendants et

cohérents, la programmation orientée objet rend le développement plus organisé et plus prévisible.

De plus, la correspondance intuitive entre les objets logiciels et les éléments du monde réel améliore la

compréhension du système par lʼensemble de lʼéquipe. Les développeurs et les experts métier peuvent

ainsi échanger plus facilement, parler le même langage et réduire les risques dʼerreurs dans la définition ou

la mise en œuvre des besoins.

Python a été pensé comme un langage pragmatique et multi-paradigme, cʼest-à-dire capable de

sʼadapter à plusieurs styles de programmation. Dès ses premières versions, il a intégré naturellement la

programmation orientée objet, sans en faire une obligation stricte.

Contrairement à des langages comme Java ou Smalltalk, qui imposent une approche entièrement fondée

sur les objets, Python a conservé une grande liberté : on peut y écrire du code procédural, fonctionnel ou

orienté objet, selon ce qui convient le mieux au problème à résoudre. Cette flexibilité permet dʼadopter une

approche simple pour les petits scripts comme une architecture plus élaborée pour les projets complexes.

Ce choix illustre la maturité du paradigme objet à lʼépoque de la création de Python. Il nʼétait plus considéré

comme la solution unique à tous les problèmes, mais comme un outil puissant à utiliser de manière

réfléchie, en fonction du contexte et des besoins du projet.

Vocabulaire

Dans le monde de la programmation orientée objet, le vocabulaire joue un rôle essentiel pour bien

comprendre comment les programmes sont conçus et organisés. Chaque terme technique a un sens précis

01_poo.md 2025-11-01

3 / 16

et correspond à une fonction particulière dans la structure dʼun logiciel. Maîtriser ce langage permet de

mieux appréhender la logique qui relie les différents éléments dʼun programme et de comprendre comment

ils interagissent entre eux.

Une classe peut être vue comme un modèle ou un plan de fabrication. Elle décrit la structure générale

que suivront tous les objets créés à partir dʼelle. Cʼest dans la classe quʼon définit les données (appelées

attributs) que les objets contiendront, ainsi que les actions (appelées méthodes) quʼils pourront

accomplir. En somme, la classe sert de base commune : elle définit ce quʼun objet sait et ce quʼil peut faire,

avant même que celui-ci nʼexiste réellement dans le programme.

La classe str correspond au type dʼobjet utilisé pour manipuler les chaînes de caractères en Python.

Lorsquʼon écrit :

prenom = "Alice" # on a instancié un objet de type 'str' et on l'a
initialisé avec la valeur 'Alice'

Deux étapes se produisent en même temps : lʼ instanciation et lʼ initialisation.

Lʼinstanciation désigne le moment où un objet est créé à partir dʼune classe. Cʼest à cet instant que

Python réserve un espace en mémoire pour ce nouvel objet et lui donne une existence concrète dans le

programme. Lʼobjet devient alors une instance de la classe str.

Lʼinitialisation, elle, correspond à la phase où cet objet reçoit ses premières valeurs. Ici, la chaîne de

caractères "Alice" devient le contenu initial de lʼobjet. On dit que cʼest son état de départ, celui quʼil

possède dès sa création.

Dans l'exemple suivant, on fait apparaître explicitement la création de lʼobjet :

nom = str('Smith') # on a instancié un objet de type 'str' et on l'a
initialisé avec la valeur 'Smith'

Ici, lʼappel à str() fait directement intervenir le constructeur de la classe, cʼest-à-dire la fonction spéciale

qui sert à créer de nouveaux objets de ce type. En lui passant la valeur 'Smith', on demande à Python de

fabriquer une nouvelle instance de str et de lʼinitialiser immédiatement avec cette donnée.

Le résultat obtenu est le même que dans la forme abrégée avec les guillemets, mais cette version montre

de manière plus explicite les étapes internes : on appelle une classe (str) comme une fonction, et elle

renvoie un nouvel objet de son propre type.

Le mot instance est souvent utilisé comme synonyme dʼobjet, mais il insiste sur le lien hiérarchique entre

un objet concret et la classe dont il provient. Ici, la variable nom fait donc référence à une instance de la

classe str, cʼest-à-dire un objet particulier représentant la chaîne de caractères 'Smith'.

Le troisième exemple met en évidence la différence entre instanciation et initialisation :

adresse = str() # on a instancié un objet de type 'str'

01_poo.md 2025-11-01

4 / 16

Ici, un objet de type str est bel et bien créé : Python réserve de la mémoire pour cette nouvelle chaîne de

caractères. Cependant, aucune valeur nʼest fournie au moment de sa création. Lʼobjet existe donc

réellement, il possède une adresse en mémoire et peut être utilisé dans le programme, mais son contenu

textuel est simplement vide.

Cette distinction entre la création de lʼobjet (instanciation) et la mise en place de ses valeurs initiales

(initialisation) est essentielle en programmation orientée objet. Elle permet de mieux comprendre comment

un langage comme Python gère le cycle de vie dʼun objet, depuis sa naissance jusquʼà sa configuration et

son utilisation.

Dans ce contexte, le terme type est équivalent à la notion de classe. Dire que prenom est de type str
revient à dire que prenom fait référence à une instance de la classe str. Cette correspondance illustre le

système de types unifié de Python : quʼil sʼagisse dʼun type dit “primitif” comme int ou str, ou dʼune

classe que lʼon définit soi-même, tout repose sur le même mécanisme orienté objet. Chaque objet possède

ainsi un type qui détermine les opérations quʼ il accepte et la manière dont il réagit lorsquʼon interagit

avec lui.

Notre propre type

En Python, jusquʼà présent, on a manipulé des types intégrés comme les entiers (int), les chaînes de
caractères (str) ou les listes (list). Mais le langage permet aussi de créer ses propres types, grâce au

mot-clé class. Cette possibilité constitue lʼun des fondements de la programmation orientée objet, car

elle permet de représenter des concepts du monde réel ou des structures logiques qui nʼexistent pas

directement dans le langage.

class Fraction: # je viens de créer un nouveau type
 pass

En écrivant class Fraction:, on déclare un nouveau type appelé Fraction. Cela indique à Python que

lʼon souhaite définir une nouvelle catégorie dʼobjets, avec ses propres données et comportements. Le

deux-points (:) marque le début du bloc de définition, comme pour les fonctions, les boucles ou les

conditions.

À lʼintérieur, on trouve pour lʼinstant lʼinstruction pass. Cette instruction spéciale ne fait rien, mais elle sert

de bouchon temporaire : Python exige quʼun bloc ne soit jamais vide, et pass permet justement de laisser

un espace réservé pour du code à venir.

En ce qui concerne la convention dʼécriture, les noms de classes commencent toujours par une

majuscule. Ce nʼest pas une obligation stricte, mais cʼest une règle de style universellement suivie en

Python. Elle permet dʼidentifier immédiatement une classe au premier coup dʼœil : lorsquʼon lit Fraction,
on comprend quʼil sʼagit dʼun type, et non dʼune variable ou dʼune fonction (qui, elles, commencent par une

minuscule). Cette cohérence visuelle rend le code plus clair et plus facile à maintenir.

Pour lʼinstant, la classe Fraction existe bien dans le programme, mais elle ne contient encore aucune

donnée ni comportement. On peut toutefois déjà créer des objets à partir dʼelle, par exemple :

01_poo.md 2025-11-01

5 / 16

ma_fraction = Fraction()

Cet appel crée une instance vide de la classe Fraction. Lʼobjet existe en mémoire, mais il ne possède

encore ni attributs ni méthodes, donc aucun rôle concret. Les prochaines étapes consisteront à ajouter des

attributs pour stocker des informations (comme le numérateur et le dénominateur) et des méthodes pour

définir ce que cet objet sait faire (comme additionner deux fractions ou les afficher).

Les Attributs

Dans la version suivante, la classe Fraction contient désormais deux attributs de classe :

class Fraction:
 numerateur = 1
 denominateur = 1

Ces deux variables, numerateur et denominateur, appartiennent directement à la classe elle-même, et

non à un objet particulier. Cela signifie quʼelles sont partagées par toutes les instances créées à partir de

cette classe.

Lorsquʼon écrit :

tiers = Fraction() # On instancie un objet de type 'Fraction'

on crée une instance concrète de la classe, cʼest-à-dire un objet en mémoire construit dʼaprès le “plan”

défini par la classe. La classe représente donc le modèle abstrait, tandis que lʼinstance correspond à un

exemplaire réel. Les parenthèses après Fraction déclenchent le processus de création de lʼobjet. La

variable tiers référence désormais cet objet en mémoire, de type Fraction.

On peut ensuite accéder aux attributs de lʼobjet grâce à la notation pointée :

print(tiers.numerateur) # affiche 1
print(tiers.denominateur) # affiche 1

Ces deux instructions montrent que lʼobjet tiers hérite automatiquement des attributs définis au niveau

de la classe. La notation avec le point (.) est la manière standard en Python pour accéder aux données ou

aux comportements dʼun objet.

Si lʼon crée plusieurs objets à partir de la même classe, ils partageront tous ces mêmes valeurs :

tiers = Fraction()
quart = Fraction()

01_poo.md 2025-11-01

6 / 16

print(tiers.numerateur) # 1
print(quart.numerateur) # 1

Dans cet état, les deux objets tiers et quart possèdent les mêmes valeurs pour numerateur et

denominateur, car ils se réfèrent tous deux aux mêmes attributs de classe.

Ce comportement devient évident lorsquʼon modifie la valeur dʼun attribut au niveau de la classe :

Fraction.numerateur = 5
print(tiers.numerateur) # 5
print(quart.numerateur) # 5

Tous les objets voient alors la nouvelle valeur, car lʼattribut appartient à la classe et non à chaque instance.

Cette situation montre la limite des attributs de classe : ils conviennent lorsque la valeur doit être

partagée entre tous les objets (par exemple, une constante ou un compteur global), mais pas lorsque

chaque objet doit avoir ses propres données.

Le Mappingproxy

Chaque classe et chaque objet en Python possède un attribut spécial appelé __dict__. Cet attribut
contient la liste des noms des attributs et leurs valeurs associées, sous la forme dʼun dictionnaire.

Si on examine celui de la classe Fraction :

print(Fraction.__dict__)

Python affiche :

mappingproxy({'__module__': '__main__',
 'numerateur': 1,
 'denominateur': 1,
 '__dict__': <attribute '__dict__' of 'Fraction' objects>,
 '__weakref__': <attribute '__weakref__' of 'Fraction'
objects>,
 '__doc__': None})

Le résultat montre un objet un peu particulier : un mappingproxy. Ce nʼest pas un vrai dictionnaire, mais

une vue en lecture seule du dictionnaire interne de la classe. Cela signifie quʼon peut le consulter, mais pas

le modifier directement. Ce mécanisme protège la structure interne de la classe contre toute modification

involontaire.

Dans ce mappingproxy, on retrouve nos deux attributs définis dans la classe, numerateur et

denominateur, chacun associé à la valeur 1. Les autres éléments affichés (__module__, __weakref__,

01_poo.md 2025-11-01

7 / 16

etc.) sont ajoutés automatiquement par Python lors de la création de la classe. Pour lʼinstant, ils ne sont pas

importants à comprendre.

Voyons maintenant ce quʼil en est pour une instance :

print(tiers.__dict__)
{}

Le résultat est un dictionnaire vide : {}. Cela veut dire que lʼobjet tiers ne possède aucun attribut qui lui

appartient vraiment. Il existe bien en mémoire, mais toutes ses données viennent encore de la classe.

Quand on écrit :

tiers.numerateur

Python suit un ordre de recherche précis :

�. Il regarde dʼabord dans le dictionnaire de lʼobjet (tiers.__dict__).
�. Comme celui-ci est vide, il continue sa recherche dans celui de la classe (Fraction.__dict__).

Cʼest ainsi que Python trouve la valeur 1 pour tiers.numerateur. Ce comportement montre que, tant

quʼun objet nʼa pas ses propres attributs, il utilise ceux de la classe dont il provient.

Essayons maintenant de modifier lʼattribut denominateur de lʼobjet tiers :

tiers.denominateur = 3

Cette instruction ne change pas la classe, mais modifie directement la structure interne de lʼinstance

tiers. Python crée un nouvel attribut dʼ instance appelé denominateur et lui assigne la valeur 3.

Le mappingproxy de la classe Fraction, lui, reste exactement le même :

print(Fraction.__dict__)
mappingproxy({'__module__': '__main__',
 'numerateur': 1,
 'denominateur': 1,
 '__dict__': <attribute '__dict__' of 'Fraction' objects>,
 '__weakref__': <attribute '__weakref__' of 'Fraction'
objects>,
 '__doc__': None})

On voit bien que denominateur vaut toujours 1 au niveau de la classe.

Cʼest un comportement essentiel de Python : si lʼassignation modifiait directement la classe, toutes les

autres instances de Fraction auraient vu leur valeur changer également, ce qui rendrait impossible

01_poo.md 2025-11-01

8 / 16

dʼavoir des objets avec des données différentes.

À présent, quand on lit à nouveau tiers.denominateur, Python trouve immédiatement la valeur dans le

dictionnaire de lʼobjet, sans avoir besoin de consulter la classe :

print(tiers.denominateur)
3

Et si on regarde le dictionnaire interne de tiers, on y voit clairement cette nouvelle donnée :

print(tiers.__dict__)
{'denominateur': 3}

Cette situation illustre ce quʼon appelle le masquage dʼattribut.

Lʼobjet tiers possède maintenant son propre attribut denominateur, qui masque celui défini dans la

classe. Les deux existent en même temps, mais dans des espaces de noms différents. Python donne

toujours la priorité à lʼattribut de lʼinstance lorsquʼil en trouve un du même nom.

Si on crée un nouvel objet sans modifier quoi que ce soit :

moitie = Fraction()
print(moitie.denominateur) # 1

on obtient bien 1, car moitie nʼa pas encore dʼattribut denominateur dans son propre dictionnaire.

Python va donc le chercher directement dans la classe.

Dans la version suivante, la classe Fraction contient une méthode appelée dire_bonjour :

class Fraction:
 numerateur = 1
 denominateur = 1

 def dire_bonjour():
 return "Bonjour tout le monde"

tiers = Fraction()

Une méthode est simplement une fonction que lʼon écrit à lʼintérieur dʼune classe.

La façon de la définir est identique à celle dʼune fonction normale : on utilise le mot-clé def, suivi du nom

de la méthode, des parenthèses, puis du corps de la méthode indenté. Ici, dire_bonjour() renvoie

simplement le texte "Bonjour tout le monde".

01_poo.md 2025-11-01

9 / 16

Mais une méthode ne se comporte pas toujours de la même manière selon la façon dont on y accède.

Python distingue deux cas :

lʼaccès depuis la classe elle-même,

et lʼaccès depuis une instance créée à partir de cette classe.

Regardons le premier cas :

print(Fraction.dire_bonjour)
<function __main__.Fraction.dire_bonjour()>

Lorsquʼon passe par la classe, Python nous renvoie une fonction. Cʼest la définition brute de la méthode,

telle quʼelle est enregistrée dans la classe. À ce stade, il sʼagit juste dʼun objet fonction stocké dans la

classe, au même titre que numerateur et denominateur.

Voyons maintenant ce qui se passe lorsquʼon y accède via une instance :

print(tiers.dire_bonjour)
<bound method Fraction.dire_bonjour of <__main__.Fraction object at
0x...>>

Le résultat est différent. Cette fois, Python affiche une méthode liée (bound method). Cela signifie que la

fonction a été automatiquement associée à lʼobjet tiers. Autrement dit, la même fonction définie dans la

classe est maintenant connectée à une instance précise.

Cette différence entre les deux affichages prépare à comprendre un concept fondamental : lorsquʼune

méthode est appelée à partir dʼun objet, Python établit un lien spécial entre cette méthode et

lʼ instance concernée. Ce lien explique certains comportements que lʼon découvrira dans la suite.

Regardons dʼabord ce quʼil se passe lorsque lʼon appelle la méthode depuis la classe :

print(Fraction.dire_bonjour())
'Bonjour tout le monde'

Ici, tout fonctionne normalement. La méthode dire_bonjour() est appelée directement depuis la

classe, donc Python exécute la fonction telle quʼelle a été définie, sans rien ajouter.

Mais si on fait la même chose avec une instance, le résultat change :

print(tiers.dire_bonjour())

Python affiche alors une erreur :

01_poo.md 2025-11-01

10 / 16

TypeError: Fraction.dire_bonjour() takes 0 positional arguments but 1 was
given

Traduction: Fraction.dire_bonjour() prend 0 paramètres, mais un lui a été donné.

À première vue, le message semble étrange : on nʼa pourtant rien mis entre les parenthèses. Alors

pourquoi Python dit-il quʼon a “donné un argument” à la fonction ?

On peut reproduire exactement le même type dʼerreur avec une fonction ordinaire :

def toto():
 return "toto"

toto("titi")

Résultat :

TypeError: toto() takes 0 positional arguments but 1 was given

Ici aussi, la fonction toto() ne prend aucun paramètre, mais on lui en a fourni un.

Alors pourquoi dire_bonjour() nous dit qu'on lui a donné un argument !!??

La réponse se cache dans le fonctionnement interne du langage. Lorsquʼune méthode est appelée à travers

une instance, ici tiers, Python envoie automatiquement cette instance comme premier argument à la

méthode. Autrement dit, il exécute en réalité quelque chose comme :

tiers.dire_bonjour(tiers)

Cette étape est automatique et invisible à lʼœil nu.

Cʼest pour cela que lʼerreur indique quʼun argument a été transmis alors que vous nʼen avez pas fourni

explicitement. La méthode dire_bonjour() nʼattend aucun paramètre, mais Python lui en a quand même

passé un (lʼobjet tiers).

Cʼest exactement ce que Python fait dans le cas de tiers.dire_bonjour() : il fournit un argument de

manière implicite, lʼobjet qui appelle la méthode (tiers).

Dans la nouvelle version suivante, la méthode dire_bonjour() a été modifiée pour accepter un

paramètre :

class Fraction:
 numerateur = 1
 denominateur = 1

01_poo.md 2025-11-01

11 / 16

 def dire_bonjour(obj): # obj = tiers par exemple
 return "Bonjour tout le monde"

Grâce à ce changement, on peut maintenant appeler la méthode depuis une instance sans provoquer

dʼerreur :

tiers = Fraction()
print(tiers.dire_bonjour()) # Bonjour tout le monde

Cette fois, Python ne se plaint plus, car la méthode attend bien un paramètre, et ce paramètre correspond

à lʼobjet qui lʼappelle. Lorsquʼon écrit tiers.dire_bonjour(), Python traduit automatiquement cet

appel en :

Fraction.dire_bonjour(tiers)

Autrement dit, lʼ instance tiers est passée en argument à la méthode, sans quʼon ait besoin de lʼécrire

soi-même.

Ce mécanisme est une règle interne du langage : à chaque fois quʼune méthode est appelée à partir dʼun

objet, Python envoie cet objet comme premier paramètre à la fonction correspondante.

Dans lʼexemple ci-dessus, on a choisi dʼappeler ce paramètre obj pour bien montrer ce qui se passe : obj
représente lʼobjet qui a fait lʼappel, ici, tiers.

Ainsi, pendant lʼexécution, lʼinterpréteur exécute en réalité :

def dire_bonjour(obj): # obj = tiers
 return "Bonjour tout le monde"

Lʼobjet tiers est donc passé automatiquement à obj.

Dans l'exemple suivant, la méthode quotient() vient donner tout son sens au paramètre que nous avons

ajouté :

class Fraction:
 numerateur = 1
 denominateur = 1

 def quotient(obj): # obj = tiers ou quart selon l'appel
 return obj.numerateur / obj.denominateur

tiers = Fraction()
tiers.denominateur = 3

01_poo.md 2025-11-01

12 / 16

quart = Fraction()
quart.denominateur = 4

print(tiers.quotient()) # 0.3333...
print(quart.quotient()) # 0.25

Ici, Python applique toujours le même principe : lorsquʼon appelle tiers.quotient(), lʼinterpréteur
traduit automatiquement cet appel en :

Fraction.quotient(tiers)

Cela signifie que lʼobjet tiers est transmis comme premier argument à la méthode et devient le paramètre

obj. Ainsi, à lʼintérieur de la méthode, obj représente lʼobjet qui a fait lʼappel.

Quand Python exécute la ligne :

return obj.numerateur / obj.denominateur

il doit aller chercher les valeurs de numerateur et denominateur. Pour cela, il suit une règle de recherche

très précise :

�. Python commence par regarder dans le mappingproxy de lʼobjet (obj.__dict__).

Dans le cas de tiers, ce mappingproxy contient {'denominateur': 3}.
Python y trouve donc denominateur = 3.

�. Sʼ il ne trouve pas un attribut dans le mappingproxy de lʼobjet, Python remonte dans celui de la

classe Fraction (Fraction.__dict__).

Il y trouve numerateur = 1, car cet attribut nʼa pas été redéfini dans lʼobjet tiers.

Ainsi, pour tiers.quotient(), Python fait :

obj.numerateur → trouvé dans Fraction.__dict__ → valeur 1

obj.denominateur → trouvé dans tiers.__dict__ → valeur 3 Résultat : 1 / 3 = 0.3333

De la même manière, pour quart.quotient(), Python suit le même ordre :

obj.numerateur → trouvé dans Fraction.__dict__ → valeur 1

obj.denominateur → trouvé dans quart.__dict__ → valeur 4 Résultat : 1 / 4 = 0.25

Ce comportement montre comment Python organise la recherche des attributs : il commence toujours par

lʼobjet qui appelle la méthode, puis, sʼil ne trouve pas lʼattribut demandé, il remonte vers la classe. Cʼest

ce mécanisme de recherche hiérarchique qui permet à chaque instance dʼavoir ses propres valeurs tout en

conservant celles définies par la classe comme valeurs par défaut.

01_poo.md 2025-11-01

13 / 16

Dans la dernière version suivante, la méthode quotient() est désormais écrite de la manière standard

utilisée en Python :

class Fraction:
 numerateur = 1
 denominateur = 1

 def quotient(self): # self = tiers ou quart
 return self.numerateur / self.denominateur

Le mot self remplace simplement le paramètre obj que nous utilisions jusquʼici. Il ne sʼagit pas dʼun mot-

clé réservé, mais dʼune convention universelle en Python. Chaque fois quʼune méthode est appelée sur un

objet, Python passe automatiquement cet objet en premier paramètre, et par convention on le nomme

self.

Ainsi, lorsque lʼon écrit :

tiers = Fraction()
tiers.denominateur = 3
print(tiers.quotient())

Python exécute en réalité :

Fraction.quotient(tiers)

et attribue la valeur de tiers à self.

À lʼintérieur de la méthode, self représente donc lʼobjet sur lequel la méthode agit. Cela permet

dʼaccéder à ses données internes (self.numerateur, self.denominateur) et de manipuler son état

indépendamment des autres instances.

Lʼutilisation de self rend ainsi le code plus clair, plus lisible et plus conforme aux conventions du langage.

Elle symbolise le lien direct entre la méthode et lʼobjet qui lʼutilise : chaque instance exécute la même

méthode, mais sur ses propres données.

L'initialisation

Jusquʼà présent, chaque fois quʼon voulait créer une fraction différente, on procédait en deux étapes :

tiers = Fraction()
tiers.denominateur = 3

quart = Fraction()
quart.denominateur = 4

01_poo.md 2025-11-01

14 / 16

deux_cinquieme = Fraction()
deux_cinquieme.numerateur = 2
deux_cinquieme.denominateur = 5

Dʼabord, on instancie la classe Fraction, ce qui crée un objet avec les valeurs par défaut (numerateur
= 1, denominateur = 1). Ensuite, on modifie manuellement ces valeurs pour adapter chaque fraction à

ce quʼon veut représenter.

Ce procédé fonctionne, mais il est un peu lourd et peu pratique : il oblige à créer lʼobjet avant de le

configurer. Ce serait plus logique de pouvoir fournir directement les valeurs souhaitées dès la création

de la fraction.

Cʼest exactement le rôle de la méthode spéciale __init__. Cette méthode permet de donner des valeurs

initiales à une instance au moment où elle est créée. Elle “prépare” lʼobjet juste après son instanciation et

permet dʼéviter dʼavoir à modifier ses attributs manuellement après coup.

Grâce à __init__, on pourra créer directement une fraction déjà configurée :

tiers = Fraction(1, 3)
quart = Fraction(1, 4)
deux_cinquieme = Fraction(2, 5)

Ainsi, au moment même où Python crée lʼobjet, il reçoit les valeurs du numérateur et du dénominateur, et

les enregistre dans ses attributs internes. On dit alors que lʼobjet est initialisé dès sa création, il possède

déjà toutes les données dont il a besoin pour fonctionner.

Dans cette nouvelle version, la classe Fraction introduit une méthode spéciale appelée __init__ :

class Fraction:
 numerateur = 1
 denominateur = 1

 def __init__(self, numerateur, denominateur):
 self.numerateur = numerateur
 self.denominateur = denominateur

 def quotient(self):
 return self.numerateur / self.denominateur

Cette méthode est automatiquement exécutée au moment où lʼon crée une nouvelle instance. Cʼest elle

qui permet de donner des valeurs de départ à lʼobjet, sans avoir à les modifier manuellement juste après

sa création.

Par exemple :

01_poo.md 2025-11-01

15 / 16

tiers = Fraction(1, 3)
quart = Fraction(1, 4)

Lorsque Python lit la ligne tiers = Fraction(1, 3), il exécute en réalité deux opérations :

�. Il crée un nouvel objet vide de type Fraction ;

�. Il appelle automatiquement la méthode __init__ pour initialiser cet objet avec les valeurs

données.

À ce moment-là, le paramètre self prend toute son importance. Lorsquʼon écrit :

self.numerateur = numerateur
self.denominateur = denominateur

on indique explicitement à Python dans quel mappingproxy (cʼest-à-dire dans quel dictionnaire

dʼinstance) il faut créer les clés numerateur et denominateur.

Concrètement :

self représente lʼobjet en cours de création (par exemple tiers ou quart) ;
self.numerateur = numerateur demande à Python de créer la clé 'numerateur' dans le

dictionnaire de lʼobjet self (self.__dict__) et dʼy stocker la valeur reçue en argument ;

self.denominateur = denominateur fait exactement la même chose pour la clé

'denominateur'.

Cela veut dire que chaque objet Fraction possède désormais ses propres attributs stockés dans son

propre dictionnaire dʼinstance. Ainsi, tiers a son propre couple (1, 3) et quart le sien (1, 4),
totalement indépendants lʼun de lʼautre.

En résumé, self indique à Python sur quel objet il doit travailler. Sans self, Python ne saurait pas où

enregistrer les données reçues en paramètres lors de lʼappel au constructeur.

En conséquence, les attributs numerateur et denominateur définis au niveau de la classe ne sont plus

jamais utilisés. Leur présence dans le mappingproxy de la classe devient donc inutile, car aucun objet nʼira

les consulter.

On peut alors simplifier la définition de la classe en les retirant complètement :

class Fraction:
 def __init__(self, numerateur, denominateur):
 self.numerateur = numerateur
 self.denominateur = denominateur

 def quotient(self):
 return self.numerateur / self.denominateur

01_poo.md 2025-11-01

16 / 16

Dès lors, chaque objet Fraction possède ses propres attributs indépendants, et la classe ne conserve que la

structure, cʼest-à-dire le plan, qui permet de les créer et de les initialiser.

Conclusion

Le couple self et __init__ forme le cœur du fonctionnement orienté objet en Python.

La méthode __init__ intervient immédiatement après la création dʼun objet. Cʼest elle qui assure son

initialisation, cʼest-à-dire la mise en place de ses premiers attributs et de leurs valeurs. Elle permet ainsi de

construire des objets déjà prêts à lʼemploi, sans devoir modifier manuellement leurs données après leur

création.

Le paramètre self, quant à lui, joue un rôle fondamental : il désigne lʼobjet sur lequel la méthode agit.

Lorsque Python appelle une méthode sur une instance, il transmet automatiquement cette instance en

premier argument. Grâce à self, chaque objet peut accéder à ses propres données, indépendamment des

autres instances de la même classe.

Ensemble, __init__ et self donnent à chaque instance son identité propre :

__init__ définit ce que contient lʼobjet au moment de sa création ;

self permet à lʼobjet de se reconnaître lui-même et de manipuler ses propres informations.

Cʼest cette combinaison qui fait de chaque instance une entité autonome, capable de stocker, modifier et

utiliser ses données sans interférer avec celles des autres.

