01_poo.md 2025-11-01

La Programmation Orientée Objet

Introduction

Dans les débuts de I'informatique, les programmes étaient écrits de maniére linéaire : une suite
d'instructions exécutées les unes aprées les autres. Cette approche fonctionnait bien pour des programmes
courts, mais a mesure que les logiciels sont devenus plus gros et plus complexes, elle a montré ses limites.
Les développeurs avaient de plus en plus de mal a organiser leur code, a le maintenir et a le faire évoluer
sans tout casser.

C'est dans ce contexte, vers les années 1960, que la programmation orientée objet est apparue. L'idée était
de mieux représenter les éléments d'un programme en s'inspirant du monde réel. Plutdt que d'écrire des
suites d'instructions, on a commencé a créer des objets : de petites unités regroupant a la fois des
données (leurs caractéristiques) et des comportements (leurs actions).

Cette nouvelle fagon de penser le code a permis de résoudre plusieurs probléemes importants :

¢ le code est plus facile a comprendre, car chaque objet représente une idée concréte ;
¢ il devient plus simple de réutiliser certaines parties du programme ;
¢ |a maintenance et les évolutions sont plus faciles, car on peut modifier un objet sans casser le reste.

Le concept d'objet est apparu pour la premiére fois avec le langage Simula, développé entre 1962 et 1967
par Ole-Johan Dahl et Kristen Nygaard a I'Institut norvégien de calcul d'Oslo. Ce langage avait été
imaginé a l'origine pour faciliter la simulation de systémes complexes, comme ceux qu'on trouve dans
I'industrie ou la recherche scientifique.

Simula introduisait deux idées fondamentales : la classe et I'objet. Grace a ces notions, il devenait possible
de regrouper au méme endroit les données (ce qu'un objet posséde) et les comportements (ce qu'il sait
faire). Cette approche a profondément changé la maniére de concevoir les programmes, car elle permettait
de créer un lien plus clair entre le monde réel et sa représentation informatique.

Les objets pouvaient ainsi contenir leur propre état interne et les opérations capables de le modifier.
Chaque objet devenait une unité indépendante et cohérente, capable de collaborer avec d'autres sans que
leurs fonctionnements internes soient mélangés.

Dans les années 1970, les idées introduites par Simula se sont largement diffusées grace a l'apparition de
Smalltalk, un langage développé au centre de recherche Xerox PARC par Alan Kay, Dan Ingalls et Adele
Goldberg. Smalltalk fut le premier langage a appliquer de maniére compléte la programmation orientée
objet : tout y était considéré comme un objet capable d'échanger des messages avec d'autres objets.

Cette approche, a la fois radicale et élégante, montrait qu'un programme pouvait étre congu entierement
autour d'interactions entre objets. Elle posait les bases d'un modele clair et unifié qui allait influencer
durablement la conception des langages de programmation.

Smalltalk donna sa forme la plus aboutie aux notions d'héritage, de polymorphisme et d'encapsulation,
trois piliers de la programmation orientée objet. Ces principes permirent d'écrire des programmes plus
souples, mieux structurés et plus proches de la logique du monde réel.

1/16

01_poo.md 2025-11-01

La programmation orientée objet répondait a plusieurs besoins essentiels du développement logiciel
moderne. Elle offrait avant tout une fagon efficace de gérer la complexité en découpant les programmes en
petites entités autonomes, plus faciles a comprendre et a modifier. Cette organisation rendait le code plus
clair et plus simple a maintenir au fil du temps.

Grace a l'encapsulation, chaque objet pouvait protéger ses données internes en ne montrant a I'extérieur
que ce qui était nécessaire. Les autres parties du programme interagissaient ainsi avec lui uniquement par
des interfaces claires, sans dépendre de son fonctionnement interne.

Le principe d'héritage permettait, quant a lui, de réutiliser le code déja existant. Une nouvelle classe
pouvait hériter des caractéristiques d'une autre et les compléter sans tout réécrire, ce qui évitait la
duplication et assurait une meilleure cohérence dans I'ensemble du programme.

Enfin, le polymorphisme apportait une grande souplesse : il devenait possible de manipuler différents
types d'objets de la méme maniére, tant qu'ils partageaient un méme comportement. Cela rendait les
programmes plus flexibles, plus évolutifs et plus faciles a adapter aux changements futurs.

L'adoption progressive de la programmation orientée objet dans I'industrie s’explique aussi par la fagon
dont elle facilite le travail en équipe. En définissant des interfaces précises et en séparant clairement les
responsabilités de chague composant, plusieurs développeurs peuvent collaborer sur un méme projet
sans se géner mutuellement. Chacun peut se concentrer sur une partie spécifique du systéme, en ayant Ia
garantie que son code interagit correctement avec celui des autres grace aux contrats établis entre les
objets.

Cette modularité naturelle est particulierement précieuse dans les projets de grande taille, ou la
coordination entre équipes est souvent complexe. En structurant le code en modules indépendants et
cohérents, la programmation orientée objet rend le développement plus organisé et plus prévisible.

De plus, la correspondance intuitive entre les objets logiciels et les éléments du monde réel améliore la
compréhension du systéme par I'ensemble de I'équipe. Les développeurs et les experts métier peuvent
ainsi échanger plus facilement, parler le méme langage et réduire les risques d'erreurs dans la définition ou

la mise en ceuvre des besoins.

Python a été pensé comme un langage pragmatique et multi-paradigme, c'est-a-dire capable de
s'adapter a plusieurs styles de programmation. Dés ses premiéres versions, il a intégré naturellement la
programmation orientée objet, sans en faire une obligation stricte.

Contrairement a des langages comme Java ou Smalltalk, qui imposent une approche entierement fondée
sur les objets, Python a conservé une grande liberté : on peut y écrire du code procédural, fonctionnel ou
orienté objet, selon ce qui convient le mieux au probléme a résoudre. Cette flexibilité permet d'adopter une
approche simple pour les petits scripts comme une architecture plus élaborée pour les projets complexes.

Ce choix illustre la maturité du paradigme objet a I'époque de la création de Python. Il n'était plus considéré
comme la solution unique a tous les problémes, mais comme un outil puissant a utiliser de maniére
réfléchie, en fonction du contexte et des besoins du projet.

Vocabulaire

Dans le monde de la programmation orientée objet, le vocabulaire joue un réle essentiel pour bien
comprendre comment les programmes sont congus et organisés. Chaque terme technique a un sens précis

2/16

01_poo.md 2025-11-01

et correspond a une fonction particuliére dans la structure d'un logiciel. Maitriser ce langage permet de
mieux appréhender la logique qui relie les différents éléments d'un programme et de comprendre comment
ils interagissent entre eux.

Une classe peut étre vue comme un modeéle ou un plan de fabrication. Elle décrit la structure générale
que suivront tous les objets créés a partir d'elle. C'est dans la classe qu’on définit les données (appelées
attributs) que les objets contiendront, ainsi que les actions (appelées méthodes) qu'ils pourront
accomplir. En somme, la classe sert de base commune : elle définit ce qu’un objet sait et ce qu'il peut faire,
avant méme que celui-ci n'existe réellement dans le programme.

La classe correspond au type d'objet utilisé pour manipuler les chaines de caractéeres en Python.

Lorsqu’on écrit :

prenom = "Alice"

Deux étapes se produisent en méme temps : I'instanciation et I'initialisation.

L'instanciation désigne le moment olu un objet est créé a partir d'une classe. C'est a cet instant que
Python réserve un espace en mémoire pour ce nouvel objet et lui donne une existence concréte dans le
programme. L'objet devient alors une instance de la classe

L'initialisation, elle, correspond a la phase ou cet objet recoit ses premiéres valeurs. Ici, la chaine de
caracteres devient le contenu initial de I'objet. On dit que c'est son état de départ, celui qu'il
posséde dés sa création.

Dans I'exemple suivant, on fait apparaitre explicitement la création de I'objet :

nom = str('Smith")

Ici, 'appel a fait directement intervenir le constructeur de la classe, c'est-a-dire la fonction spéciale
qui sert a créer de nouveaux objets de ce type. En lui passant la valeur , on demande a Python de
fabriquer une nouvelle instance de et de l'initialiser immédiatement avec cette donnée.

Le résultat obtenu est le méme que dans la forme abrégée avec les guillemets, mais cette version montre
de maniére plus explicite les étapes internes : on appelle une classe () comme une fonction, et elle
renvoie un nouvel objet de son propre type.

Le mot instance est souvent utilisé comme synonyme d'objet, mais il insiste sur le lien hiérarchigue entre
un objet concret et la classe dont il provient. Ici, la variable fait donc référence a une instance de la
classe , C'est-a-dire un objet particulier représentant la chaine de caracteres

Le troisieme exemple met en évidence la différence entre instanciation et initialisation :

adresse = str()
3/16

01_poo.md 2025-11-01

Ici, un objet de type est bel et bien créé : Python réserve de la mémoire pour cette nouvelle chaine de
caracteres. Cependant, aucune valeur n'est fournie au moment de sa création. L'objet existe donc
réellement, il posséde une adresse en mémoire et peut étre utilisé dans le programme, mais son contenu
textuel est simplement vide.

Cette distinction entre la création de I'objet (instanciation) et la mise en place de ses valeurs initiales
(initialisation) est essentielle en programmation orientée objet. Elle permet de mieux comprendre comment
un langage comme Python gére le cycle de vie d'un objet, depuis sa naissance jusqu’a sa configuration et
son utilisation.

Dans ce contexte, le terme type est équivalent a la notion de classe. Dire que est de type
revient a dire que fait référence a une instance de la classe . Cette correspondance illustre le
systéme de types unifié de Python : qu'il s'agisse d'un type dit “primitif” comme ou ,oud'une

classe que I'on définit soi-méme, tout repose sur le méme mécanisme orienté objet. Chaque objet possede
ainsi un type qui détermine les opérations qu'il accepte et la maniére dont il réagit lorsqu’on interagit
avec lui.

Notre propre type

En Python, jusqu'a présent, on a manipulé des types intégrés comme les entiers (), les chaines de
caracteres () ou les listes (). Mais le langage permet aussi de créer ses propres types, grace au
mot-clé . Cette possibilité constitue I'un des fondements de la programmation orientée objet, car
elle permet de représenter des concepts du monde réel ou des structures logiques qui n'existent pas
directement dans le langage.

class Fraction:
pass

En écrivant , on déclare un nouveau type appelé Fraction. Cela indique a Python que
I'on souhaite définir une nouvelle catégorie d'objets, avec ses propres données et comportements. Le
deux-points (:) marque le début du bloc de définition, comme pour les fonctions, les boucles ou les

conditions.
A I'intérieur, on trouve pour I'instant I'instruction . Cette instruction spéciale ne fait rien, mais elle sert
de bouchon temporaire : Python exige qu'un bloc ne soit jamais vide, et permet justement de laisser

un espace réservé pour du code a venir.

En ce qui concerne la convention d'écriture, les noms de classes commencent toujours par une
majuscule. Ce n'est pas une obligation stricte, mais c'est une régle de style universellement suivie en
Python. Elle permet d'identifier inmédiatement une classe au premier coup d'ceil : lorsqu’on lit ,
on comprend qu'il s'agit d'un type, et non d'une variable ou d'une fonction (qui, elles, commencent par une
minuscule). Cette cohérence visuelle rend le code plus clair et plus facile a maintenir.

Pour I'instant, la classe existe bien dans le programme, mais elle ne contient encore aucune
donnée ni comportement. On peut toutefois déja créer des objets a partir d'elle, par exemple :

4/16

01_poo.md 2025-11-01

ma_fraction = Fraction()

Cet appel crée une instance vide de la classe . L'objet existe en mémoire, mais il ne possede
encore ni attributs ni méthodes, donc aucun réle concret. Les prochaines étapes consisteront a ajouter des
attributs pour stocker des informations (comme le numérateur et le dénominateur) et des méthodes pour
définir ce que cet objet sait faire (comme additionner deux fractions ou les afficher).

Les Attributs

Dans la version suivante, la classe contient désormais deux attributs de classe :

class Fraction:
numerateur =
denominateur =

Ces deux variables, et , appartiennent directement a la classe elle-méme, et
non a un objet particulier. Cela signifie qu'elles sont partagées par toutes les instances créées a partir de
cette classe.

Lorsqu’on écrit :

tiers = Fraction()

on crée une instance concréte de la classe, c'est-a-dire un objet en mémoire construit d'apres le “plan”
défini par la classe. La classe représente donc le modéle abstrait, tandis que l'instance correspond a un
exemplaire réel. Les parenthéses apreés déclenchent le processus de création de l'objet. La

variable référence désormais cet objet en mémoire, de type

On peut ensuite accéder aux attributs de I'objet grace a la notation pointée :

print(tiers.numerateur)
print(tiers.denominateur)

Ces deux instructions montrent que I'objet hérite automatiquement des attributs définis au niveau
de la classe. La notation avec le point (.) est la maniére standard en Python pour accéder aux données ou
aux comportements d'un objet.

Si l'on crée plusieurs objets a partir de la méme classe, ils partageront tous ces mémes valeurs :

Fraction()
Fraction()

tiers
quart

5/16

01_poo.md 2025-11-01

print(tiers.numerateur) #
print(quart.numerateur) #

1

1

Dans cet état, les deux objets et possédent les mémes valeurs pour et
, car ils se référent tous deux aux mémes attributs de classe.

Ce comportement devient évident lorsqu’on modifie la valeur d'un attribut au niveau de la classe :

Fraction.numerateur =
print(tiers.numerateur)

5
print(quart.numerateur) # 5

Tous les objets voient alors la nouvelle valeur, car I'attribut appartient a la classe et non a chaque instance.

Cette situation montre la limite des attributs de classe : ils conviennent lorsque la valeur doit étre
partagée entre tous les objets (par exemple, une constante ou un compteur global), mais pas lorsque
chaque objet doit avoir ses propres données.

Le Mappingproxy

Chaque classe et chaque objet en Python posséde un attribut spécial appelé . Cet attribut
contient la liste des noms des attributs et leurs valeurs associées, sous la forme d'un dictionnaire.

Si on examine celui de la classe
print(Fraction.__dict_)

Python affiche :

mappingproxy({'__module__ __main__"',
"numerateur': 1,
denominateur': 1,

' dict__': <attribute '__dict__"' of 'Fraction' objects>,
' weakref__': <attribute '__weakref__' of 'Fraction'
objects>,
' doc__': None})
Le résultat montre un objet un peu particulier : un . Ce n'est pas un vrai dictionnaire, mais

une vue en lecture seule du dictionnaire interne de la classe. Cela signifie gu’on peut le consulter, mais pas
le modifier directement. Ce mécanisme protége la structure interne de la classe contre toute modification
involontaire.

Dans ce , on retrouve nos deux attributs définis dans la classe, et
, chacun associé a la valeur 1. Les autres éléments affichés (, ,

6/16

01_poo.md 2025-11-01

etc.) sont ajoutés automatiquement par Python lors de la création de la classe. Pour I'instant, ils ne sont pas
importants a comprendre.

Voyons maintenant ce qu'il en est pour une instance :

print(tiers.__dict__)

Le résultat est un dictionnaire vide : | ;. Cela veut dire que I'objet ne posséde aucun attribut qui lui
appartient vraiment. Il existe bien en mémoire, mais toutes ses données viennent encore de la classe.
Quand on écrit :

tiers.numerateur

Python suit un ordre de recherche précis :

1. Il regarde d'abord dans le dictionnaire de I'objet ().
2. Comme celui-ci est vide, il continue sa recherche dans celui de la classe ().
C'est ainsi que Python trouve la valeur 1 pour . Ce comportement montre que, tant

qu'un objet n'a pas ses propres attributs, il utilise ceux de la classe dont il provient.

Essayons maintenant de modifier I'attribut de l'objet

tiers.denominateur =

Cette instruction ne change pas la classe, mais modifie directement la structure interne de I'instance
. Python crée un nouvel attribut d'instance appelé et lui assigne la valeur

Le de la classe , lui, reste exactement le méme :

print(Fraction.__dict_)

mappingproxy({'__module__ __main__",
'numerateur': 1,
'denominateur': 1,
' _dict__': <attribute '__dict__"' of 'Fraction' objects>,
' _weakref__': <attribute '__weakref__' of 'Fraction'
objects>,
' doc__ ': 1)
On voit bien que vaut toujours 1 au niveau de la classe.

C'est un comportement essentiel de Python : si I'assignation modifiait directement la classe, toutes les
autres instances de auraient vu leur valeur changer également, ce qui rendrait impossible

7/16

01_poo.md 2025-11-01

d'avoir des objets avec des données différentes.

A présent, quand on lit a nouveau , Python trouve immédiatement la valeur dans le
dictionnaire de I'objet, sans avoir besoin de consulter la classe :

print(tiers.denominateur)

Et si on regarde le dictionnaire interne de , on y voit clairement cette nouvelle donnée :

print(tiers.__dict_)

Cette situation illustre ce qu'on appelle le masquage d'attribut.

L'objet posséde maintenant son propre attribut , qui masque celui défini dans la
classe. Les deux existent en méme temps, mais dans des espaces de noms différents. Python donne
toujours la priorité a l'attribut de I'instance lorsqu'il en trouve un du méme nom.

Si on crée un nouvel objet sans modifier quoi que ce soit :

moitie = Fraction()
print(moitie.denominateur)

on obtient bien 1, car n'a pas encore d'attribut dans son propre dictionnaire.
Python va donc le chercher directement dans la classe.

Dans la version suivante, la classe contient une méthode appelée

class Fraction:
numerateur =
denominateur =

def dire_bonjour():
return "Bonjour tout le monde"

tiers = Fraction()

Une méthode est simplement une fonction que I'on écrit a I'intérieur d'une classe.

La fagon de la définir est identique a celle d'une fonction normale : on utilise le mot-clé , suivi du nom
de la méthode, des parentheses, puis du corps de la méthode indenté. Ici, renvoie

simplement le texte

8/16

01_poo.md 2025-11-01

Mais une méthode ne se comporte pas toujours de la méme maniére selon la fagon dont on y accéde.
Python distingue deux cas :

e |'acces depuis la classe elle-méme,
e et I'accés depuis une instance créée a partir de cette classe.

Regardons le premier cas :

print(Fraction.dire_bonjour)

Lorsqu’on passe par la classe, Python nous renvoie une fonction. C'est la définition brute de la méthode,
telle qu'elle est enregistrée dans la classe. A ce stade, il s'agit juste d'un objet fonction stocké dans la
classe, au méme titre que et

Voyons maintenant ce qui se passe lorsqu’on y accéde via une instance :

print(tiers.dire_bonjour)

Le résultat est différent. Cette fois, Python affiche une méthode liée (bound method). Cela signifie que la
fonction a été automatiquement associée a I'objet . Autrement dit, la méme fonction définie dans la
classe est maintenant connectée a une instance précise.

Cette différence entre les deux affichages prépare a comprendre un concept fondamental : lorsqu'une
méthode est appelée a partir d'un objet, Python établit un lien spécial entre cette méthode et
I'instance concernée. Ce lien explique certains comportements que I'on découvrira dans la suite.

Regardons d'abord ce qu'il se passe lorsque I'on appelle la méthode depuis la classe :

print(Fraction.dire_bonjour())

Ici, tout fonctionne normalement. La méthode est appelée directement depuis la
classe, donc Python exécute la fonction telle qu'elle a été définie, sans rien ajouter.
Mais si on fait la méme chose avec une instance, le résultat change :

print(tiers.dire_bonjour())

Python affiche alors une erreur :

9/16

01_poo.md 2025-11-01

TypeError: Fraction.dire_bonjour() takes @ positional arguments but 1 was
given

Traduction: Fraction.dire_bonjour() prend O paramétres, mais un lui a été donné.

A premiére vue, le message semble étrange : on n'a pourtant rien mis entre les parenthéses. Alors
pourquoi Python dit-il gu’on a “donné un argument” a la fonction ?

On peut reproduire exactement le méme type d’erreur avec une fonction ordinaire :

def toto
return "toto"

toto("titi")

Résultat :

TypeError: toto() takes @ positional arguments but 1 was given

Ici aussi, la fonction ne prend aucun parameétre, mais on lui en a fourni un.
Alors pourquoi nous dit qu'on lui a donné un argument !1??

La réponse se cache dans le fonctionnement interne du langage. Lorsqu’'une méthode est appelée a travers
une instance, ici , Python envoie automatiquement cette instance comme premier argument ala
méthode. Autrement dit, il exécute en réalité quelque chose comme :

tiers.dire_bonjour(tiers)

Cette étape est automatique et invisible a I'ceil nu.

C'est pour cela que l'erreur indique qu'un argument a été transmis alors que vous n'en avez pas fourni

explicitement. La méthode n'attend aucun paramétre, mais Python lui en a quand méme
passé un (l'objet).

C'est exactement ce que Python fait dans le cas de . il fournit un argument de
maniére implicite, I'objet qui appelle la méthode ().

Dans la nouvelle version suivante, la méthode a été modifiée pour accepter un
parametre :

class Fraction:
numerateur =
denominateur =

10/16

01_poo.md 2025-11-01

def dire_bonjour : # obj = tiers par exemple
return "Bonjour tout le monde"

Grace a ce changement, on peut maintenant appeler la méthode depuis une instance sans provoquer
d'erreur :

tiers = Fraction()
print(tiers.dire_bonjour()) # Bonjour tout le monde

Cette fois, Python ne se plaint plus, car la méthode attend bien un parameétre, et ce paramétre correspond
a l'objet qui I'appelle. Lorsqu’on écrit , Python traduit automatiquement cet
appel en:

Fraction.dire_bonjour(tiers)

Autrement dit, I'instance est passée en argument a la méthode, sans qu’on ait besoin de I'écrire
soi-méme.

Ce mécanisme est une regle interne du langage : a chaque fois qu'une méthode est appelée a partir d'un
objet, Python envoie cet objet comme premier parameétre a la fonction correspondante.

Dans I'exemple ci-dessus, on a choisi d'appeler ce parametre pour bien montrer ce qui se passe :
représente I'objet qui a fait I'appel, ici,

Ainsi, pendant I'exécution, l'interpréteur exécute en réalité :

def dire_bonjour : # obj = tiers
return "Bonjour tout le monde"

L'objet est donc passé automatiquement a
Dans I'exemple suivant, la méthode vient donner tout son sens au parametre que nous avons
ajouté :

class Fraction:
numerateur =
denominateur =

def quotient : # obj = tiers ou quart selon 1l'appel
return obj.numerateur / obj.denominateur

tiers = Fraction()
tiers.denominateur =

11/16

01_poo.md 2025-11-01

quart = Fraction()
quart.denominateur =

print(tiers.quotient())
print(quart.quotient())

Ici, Python applique toujours le méme principe : lorsqu’on appelle , I'interpréteur
traduit automatiquement cet appel en:

Fraction.quotient(tiers)

Cela signifie que l'objet est transmis comme premier argument a la méthode et devient le paramétre
. Ainsi, a l'intérieur de la méthode, représente I'objet qui a fait I'appel.

Quand Python exécute la ligne :

return obj.numerateur / obj.denominateur

il doit aller chercher les valeurs de et . Pour cela, il suit une regle de recherche

trés précise :
1. Python commence par regarder dans le mappingproxy de I'objet ().

o Dansle cas de , Ce mappingproxy contient
o Pythony trouve donc

2. S'il ne trouve pas un attribut dans le mappingproxy de I'objet, Python remonte dans celui de Ia

classe ().
o llytrouve , car cet attribut n'a pas été redéfini dans l'objet

Ainsi, pour , Python fait :

. - trouvé dans - valeur 1

° - trouvé dans - valeur 3 Résultat :
De la méme maniere, pour , Python suit le méme ordre :

. - trouvé dans - valeur 1

. - trouvé dans - valeur 4 Résultat :

Ce comportement montre comment Python organise la recherche des attributs : il commence toujours par
I'objet qui appelle la méthode, puis, s'il ne trouve pas l'attribut demandé, il remonte vers la classe. C'est
ce mécanisme de recherche hiérarchique qui permet a chaque instance d'avoir ses propres valeurs tout en
conservant celles définies par la classe comme valeurs par défaut.

12/16

01_poo.md 2025-11-01

Dans la derniére version suivante, la méthode est désormais écrite de la maniére standard
utilisée en Python :

class Fraction:
numerateur =
denominateur =

def quotient : # self = tiers ou quart
return self.numerateur / self.denominateur

Le mot remplace simplement le parametre que nous utilisions jusqgu'ici. Il ne s'agit pas d'un mot-
clé réservé, mais d'une convention universelle en Python. Chaque fois qu'une méthode est appelée sur un
objet, Python passe automatiquement cet objet en premier paramétre, et par convention on le nomme

Ainsi, lorsque I'on écrit :

tiers = Fraction()
tiers.denominateur =
print(tiers.quotient())

Python exécute en réalité :

Fraction.quotient(tiers)

et attribue la valeur de a

A l'intérieur de la méthode, représente donc I'objet sur lequel la méthode agit. Cela permet
d'accéder a ses données internes (,) et de manipuler son état

indépendamment des autres instances.

L'utilisation de rend ainsi le code plus clair, plus lisible et plus conforme aux conventions du langage.
Elle symbolise le lien direct entre la méthode et I'objet qui l'utilise : chaque instance exécute la méme
méthode, mais sur ses propres données.

L'initialisation

Jusqu’a présent, chaque fois qu’on voulait créer une fraction différente, on procédait en deux étapes :

tiers = Fraction()
tiers.denominateur

quart = Fraction()
quart.denominateur

13/16

01_poo.md 2025-11-01

deux_cinquieme = Fraction()
deux_cinquieme.numerateur =
deux_cinquieme.denominateur =

D’abord, on instancie la classe , Ce qui crée un objet avec les valeurs par défaut (

,). Ensuite, on modifie manuellement ces valeurs pour adapter chaque fraction a
ce qu'on veut représenter.

Ce procédé fonctionne, mais il est un peu lourd et peu pratique : il oblige a créer I'objet avant de le
configurer. Ce serait plus logique de pouvoir fournir directement les valeurs souhaitées dés la création
de la fraction.

C'est exactement le role de la méthode spéciale . Cette méthode permet de donner des valeurs
initiales a une instance au moment ou elle est créée. Elle “prépare” I'objet juste aprés son instanciation et
permet d'éviter d'avoir a modifier ses attributs manuellement aprés coup.

Grace a , on pourra créer directement une fraction déja configurée :

tiers = Fraction(1, 3)
quart = Fraction(1, 4)
deux_cinquieme = Fraction(2, 5)

Ainsi, au moment méme ou Python crée I'objet, il regoit les valeurs du numérateur et du dénominateur, et
les enregistre dans ses attributs internes. On dit alors que I'objet est initialisé dés sa création, il posséde
déja toutes les données dont il a besoin pour fonctionner.

Dans cette nouvelle version, la classe introduit une méthode spéciale appelée
class Fraction:

numerateur =
denominateur =

def __init__ :
self.numerateur = numerateur
self.denominateur = denominateur

def quotient :
return self.numerateur / self.denominateur

Cette méthode est automatiquement exécutée au moment ou I'on crée une nouvelle instance. C'est elle
qui permet de donner des valeurs de départ a I'objet, sans avoir a les modifier manuellement juste aprés
sa création.

Par exemple :

14/16

01_poo.md 2025-11-01

tiers = Fraction(1, 3)
quart = Fraction(1, 4)

Lorsque Python lit la ligne , il exécute en réalité deux opérations :

1. Il crée un nouvel objet vide de type ;

2. Il appelle automatiquement la méthode pour initialiser cet objet avec les valeurs
données.
A ce moment-13, le paramétre prend toute son importance. Lorsqu’on écrit :

self.numerateur = numerateur
self.denominateur = denominateur

on indique explicitement a Python dans quel mappingproxy (c'est-a-dire dans quel dictionnaire

d'instance) il faut créer les clés et
Concréetement :
. représente I'objet en cours de création (par exemple ou)
. demande a Python de créer la clé dans le
dictionnaire de I'objet () et d'y stocker la valeur regue en argument ;
. fait exactement la méme chose pour la clé
Cela veut dire que chaque objet posséde désormais ses propres attributs stockés dans son
propre dictionnaire d'instance. Ainsi, a son propre couple et le sien ,

totalement indépendants I'un de l'autre.

En résumé, indique a Python sur quel objet il doit travailler. Sans , Python ne saurait pas ou
enregistrer les données regues en parameétres lors de I'appel au constructeur.

En conséquence, les attributs et définis au niveau de la classe ne sont plus
jamais utilisés. Leur présence dans le mappingproxy de la classe devient donc inutile, car aucun objet n'ira
les consulter.

On peut alors simplifier la définition de la classe en les retirant complétement :

class Fraction:
def __init__ :
self.numerateur = numerateur
self.denominateur = denominateur

def quotient :
return self.numerateur / self.denominateur

15/16

01_poo.md 2025-11-01

Dés lors, chaque objet Fraction possede ses propres attributs indépendants, et la classe ne conserve que la
structure, c’'est-a-dire le plan, qui permet de les créer et de les initialiser.

Conclusion
Le couple et forme le coeur du fonctionnement orienté objet en Python.
La méthode intervient immédiatement aprés la création d'un objet. C'est elle qui assure son

initialisation, c'est-a-dire la mise en place de ses premiers attributs et de leurs valeurs. Elle permet ainsi de
construire des objets déja préts a I'emploi, sans devoir modifier manuellement leurs données aprés leur

création.

Le parametre , quant a lui, joue un réle fondamental : il désigne I'objet sur lequel la méthode agit.
Lorsque Python appelle une méthode sur une instance, il transmet automatiquement cette instance en
premier argument. Grace a , chaque objet peut accéder a ses propres données, indépendamment des
autres instances de la méme classe.

Ensemble, et donnent a chaque instance son identité propre :
. définit ce que contient I'objet au moment de sa création ;
. permet a l'objet de se reconnaitre lui-méme et de manipuler ses propres informations.

C'est cette combinaison qui fait de chaque instance une entité autonome, capable de stocker, modifier et
utiliser ses données sans interférer avec celles des autres.

16/16

