02_gestion_exceptions.md 2025-11-01

Gestion des Exceptions

Introduction

En Python, la gestion des exceptions joue un réle important dans la fiabilité et la robustesse des
programmes. Une exception représente une situation inattendue qui survient pendant I'exécution, comme
une division par zéro, I'accés a un fichier inexistant ou l'utilisation d'un type de donnée inapproprié.
Lorsqu’une telle situation se produit, Python interrompt temporairement le déroulement normal du
programme pour signaler l'erreur.

Et un programme ne doit JAMAIS s'arréter pour une raison quelconque.

Sans mécanisme de gestion, ces erreurs provoqueraient I'arrét immédiat du programme. C'est pourquoi
Python fournit un systéme complet de gestion des exceptions qui permet non seulement de détecter les
erreurs, mais aussi de les traiter de maniere contrélée. Grace a ce systeme, un développeur peut anticiper
les problemes potentiels, afficher des messages explicites et assurer la continuité de I'exécution sans
interruption brutale.

La gestion des exceptions repose sur I'emploi des mots-clés , , et . Ensembile, ils
permettent d'encadrer les zones de code susceptibles de générer des erreurs, d'intercepter celles qui
surviennent, et de définir précisément les actions a entreprendre en cas d'anomalie. Ce mécanisme rend le
code plus sdr, plus lisible et plus professionnel, en donnant la possibilité d'anticiper les imprévus et d'y
répondre avec clarté.

Exemple

Dans la version suivante de la classe , on introduit une étape : la validation des données au
moment de l'initialisation.

class Fraction:
def __init__ -
if not isinstance(numerateur, int) or not isinstance(denominateur,
int):
raise TypeError('Le numerateur et le denominateur doivent etre
des entiers")
if denominateur ==
raise ValueError('Le denominateur ne peut etre nul")
self.numerateur = numerateur
self.denominateur = denominateur

def quotient :
return self.numerateur / self.denominateur

La fonction

La fonction est une fonction intégrée de Python. Elle permet de vérifier le type d'un objet
avant de l'utiliser. Sa syntaxe est la suivante :

02_gestion_exceptions.md 2025-11-01

isinstance(objet, type)

Elle renvoie si I'objet correspond bien au type indiqué, et sinon.

Dans notre code :

if not isinstance(numerateur, int) or not isinstance(denominateur, int):
raise TypeError('"Le numerateur et le denominateur doivent etre des
entiers")

on s'assure que les deux valeurs transmises, et , sont bien des entiers ().
En effet, une fraction ne peut contenir que des nombres entiers. C'est la définition méme d'une fraction.

Si ce n'est pas le cas, on interrompt immédiatement la création de I'objet avec une erreur de type

Pourquoi protéger l'initialisation des attributs

Lorsqu'on écrit une classe, il est important de garantir la cohérence des objets que I'on crée. Si un
utilisateur essayait de faire :

f = Fraction(, "toto")

sans cette vérification, I'objet serait créé avec des données incohérentes (et), ce qui
provoquerait plus tard des erreurs difficiles 8 comprendre. En ajoutant des controles dés , on
s'assure que chaque instance de est valide dés le départ.

De la méme maniére :

if denominateur ==
raise ValueError('Le denominateur ne peut etre nul")

empéche la création d'une fraction avec un dénominateur nul, ce qui serait mathématiquement
impossible et causerait une erreur lors du calcul du quotient.

Le mot-clé et la gestion des erreurs
L'instruction permet de déclencher volontairement une exception lorsque quelque chose ne va
pas. Ici, on souléve () deux types d'exceptions différentes selon la nature du probleme :

° - lorsque les types ne sont pas corrects,

. - lorsque la valeur fournie est inacceptable (comme un zéro au dénominateur).

2/9

02_gestion_exceptions.md 2025-11-01

Ces exceptions appartiennent a une hiérarchie d'exceptions dans Python. Toutes les erreurs héritent de la
classe de base , ce qui signifie qu'on peut intercepter une erreur précise ou plus générale selon
le contexte.

Le bloc
Imaginons le code suivant :
print("Début du programme")

tiers = Fraction(1, 0)
print("Fin du programme")

Lorsqu’on exécute ce code, Python affiche le message , puis rencontre la ligne
qui tente de créer une fraction avec un dénominateur nul. La méthode de notre classe
détecte cette situation impossible et léve une exception de type avec le message

A ce moment précis, I'exécution du programme s'interrompt immédiatement : Python arréte tout et
n'exécute jamais la ligne suivante (). Autrement dit, le programme plante
dés qu'une erreur non gérée survient.

Pour éviter ce comportement brutal, Python propose un mécanisme appelé gestion des exceptions, qui
repose sur le bloc . Il permet de surveiller une portion de code susceptible de générer une
erreur et de réagir proprement si une exception survient, sans que le programme entier s'arréte.

Voici la version corrigée du code :

print("Début du programme")

try:
tiers = Fraction(1, 0)
except ValueError as msg:
print("Erreur :", msg)

print("Fin du programme")

Dans ce cas, Python commence I'exécution du bloc . Il essaie de créer l'objet , mais l'instruction

dans déclenche une erreur. Au lieu de stopper le programme,
Python intercepte cette erreur et passe directement dans le bloc , ou la variable contient le
message de I'exception.

L'affichage sera alors :

Début du programme
Erreur : Le denominateur ne peut etre nul
Fin du programme

3/9

02_gestion_exceptions.md 2025-11-01

Le programme continue donc a s'exécuter normalement aprés avoir signalé I'erreur.

On peut aussi intercepter plusieurs types d'exceptions si I'on sait que plusieurs erreurs différentes
peuvent se produire :

try:
f = Fraction("a", 3)
except TypeError as msg:
print("Erreur de type
except ValueError as e:
print("Erreur de valeur

, msg)

, msg)

Ici, Python teste d'abord le bloc . Si le premier argument n’'est pas un entier (dans cet exemple),
une est levée, et c'est le premier qui s'exécute. Si, au contraire, le dénominateur vaut
zéro, c'est le second qui prend le relais.

Ce systeme permet donc de controler les erreurs, de personnaliser les messages affichés a |'utilisateur
et surtout de garantir la stabilité du programme. Méme en cas d'anomalie, I'exécution se poursuit
proprement sans interruption brutale.

Le bloc

Le bloc peut étre enrichi avec deux autres parties importantes : et , qui
rendent la gestion des erreurs encore plus précise et plus lisible.

Le mot-clé s'utilise pour exécuter du code uniquement si aucune exception ne s'est produite dans
le bloc . Autrement dit, le code contenu dans ne sera exécuté que si tout s'est bien passé.
Exemple :

try:

f = Fraction(1, 3)

except (TypeError, ValueError) as msg:
print("Erreur :", msg)

else:
print("La fraction a été créée avec succes

, f.quotient())

Voici ce qu'il se passe pas a pas:

1. Python exécute le code du bloc
2. Si une erreur est détectée, le bloc s'exécute, et Python ignore complétement le
3. Si aucune erreur n'est levée, le bloc s'exécute normalement.

L'intérét du est d'éviter de mélanger le code “normal” (ce qui se passe quand tout va bien) avec le
code de gestion d'erreurs. Cela rend la structure du programme plus claire : le pour ce qui peut
échouer, le pour les erreurs, et le pour ce qui doit se passer en cas de succes.

4/9

02_gestion_exceptions.md 2025-11-01

Le bloc

Le mot-clé permet, lui, de définir une portion de code qui sera toujours exécutée, qu'il y ait eu
une erreur ou nhon. Ce bloc est utile pour effectuer des actions de nettoyage ou de fermeture de

ressources (par exemple, fermer un fichier ou une connexion réseau) méme si une exception s'est produite.
Exemple :
try:

f = Fraction(1, 0)
except ValueError as msg:

print("Erreur :", msg)
else:

print("La fraction a été créée avec succes :", f.quotient())
finally:

print("Fin du traitement.")

Voici le déroulement :

Python essaie d'exécuter le bloc

e Une erreur est levée (ici) = le bloc s'exécute.
e Le bloc est ignoré, car une exception s'est produite.
e Lebloc s'exécute dans tous les cas, méme s'il y a eu une erreur.

L'affichage sera:

Erreur : Le denominateur ne peut etre nul
Fin du traitement.

Et sile code du ne provogue aucune erreur :

La fraction a été créée avec succés : 0.3333
Fin du traitement.

Le bloc s'exécute quoi qu'il arrive, méme si le programme rencontre une exception non gérée ou
quitte le avec un

En résumé

. -> contient le code a surveiller.

° - intercepte et traite les erreurs.

. - s'exécute seulement si tout s'est bien passé.

. - s'exécute toujours, qu'il y ait une erreur ou non.

Cette structure compléte rend le code plus robuste et plus prévisible, tout en clarifiant le comportement du
programme dans chaque situation possible.

5/9

02_gestion_exceptions.md 2025-11-01

Hierarchie des exceptions

En Python, toutes les erreurs sont organisées sous forme d'une hiérarchie de classes, un peu comme une

arborescence ou chaque type d'erreur hérite d'un type plus général.

Cette hiérarchie permet de capturer plusieurs erreurs différentes en n’utilisant qu’'une seule catégorie

commune.

BaseException

*

Exception Keyboardinterrupt

!

Attribute | | Arithmetic | | EOF | |[Name| | Lookup Stop OS || Type || Value
Error Error Error Error Error lteration | | Error | | Error Error

f i f

FloatingPoint || Overflow | | ZeroDivision || Index || Key || FileExists | | Permission
Error Error Error Error || Error Error Error

Prenons cet exemple :

liste = [0, 1, 2, 3]
dico = {'nom': 'Doe'}

try:
print(dico['prenom'])
print(liste[7])

except (KeyError, IndexError) as msg:
print(msg)

Voici ce qui se passe :

e La premiere ligne du bloc provoque une KeyError, car la clé n‘existe pas dans le
dictionnaire
e |Le programme s'arréte donc immédiatement a cette ligne et ne lit pas la suivante (),

puisque I'exception a déja été levée.
e |'exception est interceptée par le bloc , qui capture a la fois et
e Le message d'erreur s'affiche alors sans que le programme plante.

Le bloc fonctionne ici parce que les deux types d'erreurs possibles (pour un dictionnaire
et pour une liste) ont été regroupés dans un méme tuple :

6/9

02_gestion_exceptions.md 2025-11-01

except (KeyError, IndexError) as msg:

Mais il existe une approche encore plus élégante.

En effet, et sont deux sous-classes d'une méme classe parente :
Cette classe regroupe toutes les erreurs liées a une recherche invalide dans une structure de données
indexée ou associée, comme une liste ou un dictionnaire.

On peut donc simplifier le code en écrivant :

liste = [0, 1, 2, 3]
dico = {'nom': 'Doe'}

try:
print(dico['prenom'])
print(liste[7])

except LookupError as msg:
print("Erreur de recherche :", msg)

Dans ce cas, capture aussi bien :
e les erreurs de type , lorsgu’on cherche une clé inexistante dans un dictionnaire,
e que les erreurs de type , lorsqu’on tente d'accéder a un indice inexistant dans une liste.

Ce mécanisme illustre parfaitement la hiérarchie des exceptions en Python : on peut intercepter soit une
erreur tres précise, soit un groupe d'erreurs plus large selon le niveau de généralité souhaité.

Ainsi :
o utiliser ou permet de traiter des cas spécifiques,
o utiliser permet de gérer d'un coup toutes les erreurs liées a la recherche d'un élément

inexistant dans une collection.

Ce systeme hiérarchique rend la gestion des erreurs plus souple et plus expressive, en laissant au
développeur le choix du niveau de précision adapté a chaque situation.

Pourquoi une hiérarchie d'exceptions ?

Une question trés pertinente, et beaucoup d'apprenants se la posent au début : pourquoi existe-t-il une
hiérarchie d'exceptions, et pourquoi ne pas simplement tout intercepter avec une seule commande

comme :

except BaseException:
print("Une erreur est survenue")

719

02_gestion_exceptions.md 2025-11-01

Pour comprendre l'intérét de cette hiérarchie, il faut d'abord savoir que toutes les erreurs en Python sont
des objets, et que ces objets sont organisés en classes, avec des relations de parenté.

Tout en haut de la hiérarchie, on trouve la classe , dont toutes les autres exceptions
héritent. Elle est la racine de tout le systéme d'erreurs du langage.

Parmi ses sous-classes, on trouve par exemple :

. (la plupart des erreurs courantes en dépendent),

. (utilisée quand le programme se ferme proprement),

. (déclenchée gquand on interrompt un programme avec).
Sous , on trouve des catégories plus précises, comme :

. pour les erreurs mathématiques (par exemple),

. pour les recherches invalides (,),

. , etc.

Cette structure permet d'étre plus précis dans le traitement des erreurs. On peut ainsi choisir de

n'intercepter que les erreurs qui concernent le contexte dans lequel on se trouve.

Prenons un exemple :

try:
resultat = /

except ZeroDivisionError:
print("Division par zéro interdite")

Ici, on ne capture que l'erreur liée a une division par zéro. Si une autre erreur survient (par exemple une
erreur de type ou une erreur de fichier), elle remontera naturellement, car elle n'a rien a voir avec cette

partie du programme.

Cela rend le code plus siir : on ne masque pas des erreurs inattendues ou graves qui méritent d'étre

corrigées, au lieu d'étre simplement ignorées.
Pourquoi il ne faut pas intercepter (ou méme) partout

Si vous attrapez toutes les exceptions avec :

try:

except BaseException as e:
print("Erreur :", e)

vous capturez absolument tout, y compris des erreurs que Python utilise pour fonctionner normalement.

Par exemple :
. empéche l'utilisateur d'arréter le programme avec ,

879

02_gestion_exceptions.md 2025-11-01

. empéche le programme de se fermer proprement,
e ou encore d'autres erreurs systéme qui devraient interrompre |'exécution.

En interceptant tout sans distinction, on risque de cacher des erreurs graves ou de bloquer des
comportements normaux du langage. Le programme semble “tenir bon", mais il devient imprévisible, voire

impossible a déboguer.
Pour conclure :

¢ La hiérarchie des exceptions permet de choisir le bon niveau de précision : on peut gérer une erreur
spécifique ou une famille entiére d'erreurs.

¢ Elle rend le code plus lisible, maitrisé et s(ir, en évitant de masquer des problémes inattendus.

e Utiliser ou méme de fagon trop générale, c'est un peu comme dire
"quelle que soit I'erreur, fais semblant que tout va bien”, ce qui est dangereux, car on perd la trace de

ce qui s'est réellement passé.

En d'autres termes : il vaut mieux attraper uniquement ce que I'on sait gérer, et laisser Python nous

avertir pour tout le reste.

9/9

