
02_gestion_exceptions.md 2025-11-01

1 / 9

Gestion des Exceptions

Introduction

En Python, la gestion des exceptions joue un rôle important dans la fiabilité et la robustesse des

programmes. Une exception représente une situation inattendue qui survient pendant lʼexécution, comme

une division par zéro, lʼaccès à un fichier inexistant ou lʼutilisation dʼun type de donnée inapproprié.

Lorsquʼune telle situation se produit, Python interrompt temporairement le déroulement normal du

programme pour signaler lʼerreur.

Et un programme ne doit JAMAIS sʼarrêter pour une raison quelconque.

Sans mécanisme de gestion, ces erreurs provoqueraient lʼarrêt immédiat du programme. Cʼest pourquoi

Python fournit un système complet de gestion des exceptions qui permet non seulement de détecter les

erreurs, mais aussi de les traiter de manière contrôlée. Grâce à ce système, un développeur peut anticiper

les problèmes potentiels, afficher des messages explicites et assurer la continuité de lʼexécution sans

interruption brutale.

La gestion des exceptions repose sur lʼemploi des mots-clés try, except, else et finally. Ensemble, ils
permettent dʼencadrer les zones de code susceptibles de générer des erreurs, dʼintercepter celles qui

surviennent, et de définir précisément les actions à entreprendre en cas dʼanomalie. Ce mécanisme rend le

code plus sûr, plus lisible et plus professionnel, en donnant la possibilité dʼanticiper les imprévus et dʼy

répondre avec clarté.

Exemple

Dans la version suivante de la classe Fraction, on introduit une étape : la validation des données au

moment de lʼinitialisation.

class Fraction:
 def __init__(self, numerateur, denominateur):
 if not isinstance(numerateur, int) or not isinstance(denominateur,
int):
 raise TypeError("Le numerateur et le denominateur doivent etre
des entiers")
 if denominateur == 0:
 raise ValueError("Le denominateur ne peut etre nul")
 self.numerateur = numerateur
 self.denominateur = denominateur

 def quotient(self):
 return self.numerateur / self.denominateur

La fonction isinstance()

La fonction isinstance() est une fonction intégrée de Python. Elle permet de vérifier le type dʼun objet

avant de lʼutiliser. Sa syntaxe est la suivante :

02_gestion_exceptions.md 2025-11-01

2 / 9

isinstance(objet, type)

Elle renvoie True si lʼobjet correspond bien au type indiqué, et False sinon.

Dans notre code :

if not isinstance(numerateur, int) or not isinstance(denominateur, int):
 raise TypeError("Le numerateur et le denominateur doivent etre des
entiers")

on sʼassure que les deux valeurs transmises, numerateur et denominateur, sont bien des entiers (int).
En effet, une fraction ne peut contenir que des nombres entiers. C'est la définition même d'une fraction.

Si ce nʼest pas le cas, on interrompt immédiatement la création de lʼobjet avec une erreur de type

TypeError.

Pourquoi protéger lʼinitialisation des attributs

Lorsquʼon écrit une classe, il est important de garantir la cohérence des objets que lʼon crée. Si un

utilisateur essayait de faire :

f = Fraction(1.5, "toto")

sans cette vérification, lʼobjet serait créé avec des données incohérentes (float et str), ce qui

provoquerait plus tard des erreurs difficiles à comprendre. En ajoutant des contrôles dès __init__, on
sʼassure que chaque instance de Fraction est valide dès le départ.

De la même manière :

if denominateur == 0:
 raise ValueError("Le denominateur ne peut etre nul")

empêche la création dʼune fraction avec un dénominateur nul, ce qui serait mathématiquement

impossible et causerait une erreur lors du calcul du quotient.

Le mot-clé raise et la gestion des erreurs

Lʼinstruction raise permet de déclencher volontairement une exception lorsque quelque chose ne va

pas. Ici, on soulève (raise) deux types dʼexceptions différentes selon la nature du problème :

TypeError → lorsque les types ne sont pas corrects,

ValueError → lorsque la valeur fournie est inacceptable (comme un zéro au dénominateur).

02_gestion_exceptions.md 2025-11-01

3 / 9

Ces exceptions appartiennent à une hiérarchie dʼexceptions dans Python. Toutes les erreurs héritent de la

classe de base Exception, ce qui signifie quʼon peut intercepter une erreur précise ou plus générale selon

le contexte.

Le bloc try/except

Imaginons le code suivant :

print("Début du programme")
tiers = Fraction(1, 0)
print("Fin du programme")

Lorsquʼon exécute ce code, Python affiche le message "Début du programme", puis rencontre la ligne

qui tente de créer une fraction avec un dénominateur nul. La méthode __init__ de notre classe

Fraction détecte cette situation impossible et lève une exception de type ValueError avec le message

"Le denominateur ne peut etre nul".

À ce moment précis, lʼexécution du programme sʼinterrompt immédiatement : Python arrête tout et

nʼexécute jamais la ligne suivante (print("Fin du programme")). Autrement dit, le programme plante

dès quʼune erreur non gérée survient.

Pour éviter ce comportement brutal, Python propose un mécanisme appelé gestion des exceptions, qui

repose sur le bloc try/except. Il permet de surveiller une portion de code susceptible de générer une

erreur et de réagir proprement si une exception survient, sans que le programme entier sʼarrête.

Voici la version corrigée du code :

print("Début du programme")

try:
 tiers = Fraction(1, 0)
except ValueError as msg:
 print("Erreur :", msg)

print("Fin du programme")

Dans ce cas, Python commence lʼexécution du bloc try. Il essaie de créer lʼobjet tiers, mais lʼinstruction
raise ValueError(...) dans __init__ déclenche une erreur. Au lieu de stopper le programme,

Python intercepte cette erreur et passe directement dans le bloc except, où la variable msg contient le

message de lʼexception.

Lʼaffichage sera alors :

Début du programme
Erreur : Le denominateur ne peut etre nul
Fin du programme

02_gestion_exceptions.md 2025-11-01

4 / 9

Le programme continue donc à sʼexécuter normalement après avoir signalé lʼerreur.

On peut aussi intercepter plusieurs types dʼexceptions si lʼon sait que plusieurs erreurs différentes

peuvent se produire :

try:
 f = Fraction("a", 3)
except TypeError as msg:
 print("Erreur de type :", msg)
except ValueError as e:
 print("Erreur de valeur :", msg)

Ici, Python teste dʼabord le bloc try. Si le premier argument nʼest pas un entier ("a" dans cet exemple),

une TypeError est levée, et cʼest le premier except qui sʼexécute. Si, au contraire, le dénominateur vaut

zéro, cʼest le second except qui prend le relais.

Ce système permet donc de contrôler les erreurs, de personnaliser les messages affichés à lʼutilisateur

et surtout de garantir la stabilité du programme. Même en cas dʼanomalie, lʼexécution se poursuit

proprement sans interruption brutale.

Le bloc else

Le bloc try/except peut être enrichi avec deux autres parties importantes : else et finally, qui
rendent la gestion des erreurs encore plus précise et plus lisible.

Le mot-clé else sʼutilise pour exécuter du code uniquement si aucune exception ne sʼest produite dans

le bloc try. Autrement dit, le code contenu dans else ne sera exécuté que si tout sʼest bien passé.

Exemple :

try:
 f = Fraction(1, 3)
except (TypeError, ValueError) as msg:
 print("Erreur :", msg)
else:
 print("La fraction a été créée avec succès :", f.quotient())

Voici ce quʼil se passe pas à pas :

�. Python exécute le code du bloc try.
�. Si une erreur est détectée, le bloc except sʼexécute, et Python ignore complètement le else.
�. Si aucune erreur nʼest levée, le bloc else sʼexécute normalement.

Lʼintérêt du else est dʼéviter de mélanger le code “normal” (ce qui se passe quand tout va bien) avec le

code de gestion dʼerreurs. Cela rend la structure du programme plus claire : le try pour ce qui peut

échouer, le except pour les erreurs, et le else pour ce qui doit se passer en cas de succès.

02_gestion_exceptions.md 2025-11-01

5 / 9

Le bloc finally

Le mot-clé finally permet, lui, de définir une portion de code qui sera toujours exécutée, quʼ il y ait eu

une erreur ou non. Ce bloc est utile pour effectuer des actions de nettoyage ou de fermeture de

ressources (par exemple, fermer un fichier ou une connexion réseau) même si une exception sʼest produite.

Exemple :

try:
 f = Fraction(1, 0)
except ValueError as msg:
 print("Erreur :", msg)
else:
 print("La fraction a été créée avec succès :", f.quotient())
finally:
 print("Fin du traitement.")

Voici le déroulement :

Python essaie dʼexécuter le bloc try.
Une erreur est levée (ici ValueError) → le bloc except sʼexécute.

Le bloc else est ignoré, car une exception sʼest produite.

Le bloc finally sʼexécute dans tous les cas, même sʼil y a eu une erreur.

Lʼaffichage sera :

Erreur : Le denominateur ne peut etre nul
Fin du traitement.

Et si le code du try ne provoque aucune erreur :

La fraction a été créée avec succès : 0.3333
Fin du traitement.

Le bloc finally sʼexécute quoi quʼ il arrive, même si le programme rencontre une exception non gérée ou

quitte le try avec un return.

En résumé

try → contient le code à surveiller.

except → intercepte et traite les erreurs.

else → sʼexécute seulement si tout sʼest bien passé.

finally → sʼexécute toujours, quʼil y ait une erreur ou non.

Cette structure complète rend le code plus robuste et plus prévisible, tout en clarifiant le comportement du

programme dans chaque situation possible.

02_gestion_exceptions.md 2025-11-01

6 / 9

Hierarchie des exceptions

En Python, toutes les erreurs sont organisées sous forme dʼune hiérarchie de classes, un peu comme une

arborescence où chaque type dʼerreur hérite dʼun type plus général.

Cette hiérarchie permet de capturer plusieurs erreurs différentes en nʼutilisant quʼune seule catégorie

commune.

Prenons cet exemple :

liste = [0, 1, 2, 3]
dico = {'nom': 'Doe'}

try:
 print(dico['prenom'])
 print(liste[7])
except (KeyError, IndexError) as msg:
 print(msg)

Voici ce qui se passe :

La première ligne du bloc try provoque une KeyError, car la clé 'prenom' nʼexiste pas dans le

dictionnaire dico.
Le programme sʼarrête donc immédiatement à cette ligne et ne lit pas la suivante (liste[7]),
puisque lʼexception a déjà été levée.

Lʼexception est interceptée par le bloc except, qui capture à la fois KeyError et IndexError.
Le message dʼerreur sʼaffiche alors sans que le programme plante.

Le bloc except fonctionne ici parce que les deux types dʼerreurs possibles (KeyError pour un dictionnaire

et IndexError pour une liste) ont été regroupés dans un même tuple :

02_gestion_exceptions.md 2025-11-01

7 / 9

except (KeyError, IndexError) as msg:

Mais il existe une approche encore plus élégante.

En effet, KeyError et IndexError sont deux sous-classes dʼune même classe parente : LookupError.
Cette classe regroupe toutes les erreurs liées à une recherche invalide dans une structure de données

indexée ou associée, comme une liste ou un dictionnaire.

On peut donc simplifier le code en écrivant :

liste = [0, 1, 2, 3]
dico = {'nom': 'Doe'}

try:
 print(dico['prenom'])
 print(liste[7])
except LookupError as msg:
 print("Erreur de recherche :", msg)

Dans ce cas, LookupError capture aussi bien :

les erreurs de type KeyError, lorsquʼon cherche une clé inexistante dans un dictionnaire,

que les erreurs de type IndexError, lorsquʼon tente dʼaccéder à un indice inexistant dans une liste.

Ce mécanisme illustre parfaitement la hiérarchie des exceptions en Python : on peut intercepter soit une

erreur très précise, soit un groupe dʼerreurs plus large selon le niveau de généralité souhaité.

Ainsi :

utiliser KeyError ou IndexError permet de traiter des cas spécifiques,

utiliser LookupError permet de gérer dʼun coup toutes les erreurs liées à la recherche dʼun élément

inexistant dans une collection.

Ce système hiérarchique rend la gestion des erreurs plus souple et plus expressive, en laissant au

développeur le choix du niveau de précision adapté à chaque situation.

Pourquoi une hiérarchie dʼexceptions ?

Une question très pertinente, et beaucoup dʼapprenants se la posent au début : pourquoi existe-t-il une

hiérarchie dʼexceptions, et pourquoi ne pas simplement tout intercepter avec une seule commande

comme :

except BaseException:
 print("Une erreur est survenue")

02_gestion_exceptions.md 2025-11-01

8 / 9

Pour comprendre lʼintérêt de cette hiérarchie, il faut dʼabord savoir que toutes les erreurs en Python sont

des objets, et que ces objets sont organisés en classes, avec des relations de parenté.

Tout en haut de la hiérarchie, on trouve la classe BaseException, dont toutes les autres exceptions

héritent. Elle est la racine de tout le système dʼerreurs du langage.

Parmi ses sous-classes, on trouve par exemple :

Exception (la plupart des erreurs courantes en dépendent),

SystemExit (utilisée quand le programme se ferme proprement),

KeyboardInterrupt (déclenchée quand on interrompt un programme avec Ctrl + C).

Sous Exception, on trouve des catégories plus précises, comme :

ArithmeticError pour les erreurs mathématiques (ZeroDivisionError par exemple),

LookupError pour les recherches invalides (KeyError, IndexError),
ValueError, TypeError, etc.

Cette structure permet dʼêtre plus précis dans le traitement des erreurs. On peut ainsi choisir de

nʼintercepter que les erreurs qui concernent le contexte dans lequel on se trouve.

Prenons un exemple :

try:
 resultat = 10 / 0
except ZeroDivisionError:
 print("Division par zéro interdite")

Ici, on ne capture que lʼerreur liée à une division par zéro. Si une autre erreur survient (par exemple une

erreur de type ou une erreur de fichier), elle remontera naturellement, car elle nʼa rien à voir avec cette

partie du programme.

Cela rend le code plus sûr : on ne masque pas des erreurs inattendues ou graves qui méritent dʼêtre

corrigées, au lieu dʼêtre simplement ignorées.

Pourquoi il ne faut pas intercepter BaseException (ou même Exception) partout

Si vous attrapez toutes les exceptions avec :

try:
 # du code
except BaseException as e:
 print("Erreur :", e)

vous capturez absolument tout, y compris des erreurs que Python utilise pour fonctionner normalement.

Par exemple :

KeyboardInterrupt empêche lʼutilisateur dʼarrêter le programme avec Ctrl + C,

02_gestion_exceptions.md 2025-11-01

9 / 9

SystemExit empêche le programme de se fermer proprement,

ou encore dʼautres erreurs système qui devraient interrompre lʼexécution.

En interceptant tout sans distinction, on risque de cacher des erreurs graves ou de bloquer des

comportements normaux du langage. Le programme semble “tenir bon”, mais il devient imprévisible, voire

impossible à déboguer.

Pour conclure :

La hiérarchie des exceptions permet de choisir le bon niveau de précision : on peut gérer une erreur

spécifique ou une famille entière dʼerreurs.

Elle rend le code plus lisible, maîtrisé et sûr, en évitant de masquer des problèmes inattendus.

Utiliser BaseException ou même Exception de façon trop générale, cʼest un peu comme dire

“quelle que soit lʼerreur, fais semblant que tout va bien”, ce qui est dangereux, car on perd la trace de

ce qui sʼest réellement passé.

En dʼautres termes : il vaut mieux attraper uniquement ce que lʼon sait gérer, et laisser Python nous

avertir pour tout le reste.

