
09_methodes_magiques.md 2025-11-01

1 / 11

Les méthodes magiques ou Dunder methods

Introduction

Les « méthodes magiques », souvent appelées « dunder methods » car leurs noms sont entourés de deux

underscores, sont des points dʼextension que Python invoque automatiquement pour intégrer nos objets

aux mécanismes du langage.

Elles ne sont pas destinées à être appelées directement par lʼutilisateur, mais par lʼinterpréteur lorsquʼune

opération donnée survient.

Par exemple, lʼinitialisation dʼun objet utilise __init__, lʼaddition peut solliciter __add__, la comparaison

__lt__, lʼitération __iter__, et lʼobtention dʼune représentation textuelle __repr__ ou __str__.

Grâce à elles, on ne « colle » pas des fonctions autour dʼune classe, on rend lʼobjet nativement compatible

avec les opérations usuelles de Python, ce qui améliore la lisibilité, le débogage et lʼinteropérabilité.

__repr__ ou la représentation textuelle

On pose une classe simple, volontairement minimale, qui servira de fil rouge :

class Person:
 def __init__(self, nom: str, prenom: str, age: int) -> None:
 self.nom = nom
 self.prenom = prenom
 self.age = age

Si on instancie puis on affiche une instance dans lʼinterpréteur interactif,

alice = Person("Alice", "Smith", 19)
print(alice)
<__main__.Person object at 0x...>

on obtient généralement une forme peu informative qui ressemble à <__main__.Person object at
0x...>.

Cette sortie est la représentation par défaut fournie par object, et elle nʼaide ni à comprendre lʼétat interne

de lʼobjet, ni à déboguer une collection dʼobjets.

On pourrait aussi utiliser print(alice.__dict__) pour afficher les attributs dʼun objet, mais cela ne

rend pas le code plus lisible.

print(alice.__dict__)
{'nom': 'Alice', 'prenom': 'Smith', 'age': 19}

09_methodes_magiques.md 2025-11-01

2 / 11

Cʼest exactement le rôle de __repr__ de corriger cela.

La méthode __repr__ doit renvoyer une chaîne de caractères qui décrit lʼobjet de manière non ambiguë.

La convention en Python veut que cette représentation soit « non-ambiguë et, si raisonnable, évaluable »,

cʼest-à-dire quʼelle ressemble à une expression valide permettant de reconstruire lʼobjet.

En pratique, lʼobjectif principal reste le débogage : __repr__ est utilisé par la fonction repr(obj), par
lʼaffichage de lʼobjet en console interactive, par les conteneurs quand ils listent leurs éléments, et très

souvent dans les journaux applicatifs. On écrit donc __repr__ pour soi-même et pour ses outils, afin de

voir rapidement les attributs-clés sans ouvrir un débogueur.

On lʼimplémente pas à pas sur notre classe. On commence par une version claire, compacte, et fidèle aux

valeurs internes :

class Person:
 def __init__(self, nom: str, prenom: str, age: int) -> None:
 self.nom = nom
 self.prenom = prenom
 self.age = age

 def __repr__(self) -> str:
 return f"Person(nom={self.nom!r}, prenom={self.prenom!r}, age=
{self.age!r})"

Le suffixe !r dans les f-strings force lʼutilisation de repr() pour chaque champ, ce qui garantit lʼajout de

guillemets autour des chaînes et une représentation sans ambiguïté des valeurs.

Cette écriture évite des surprises comme des espaces manquants ou des chaînes non citées, et elle reste

correcte même si un attribut contient des caractères spéciaux.

On observe maintenant le bénéfice immédiat. En console, pers sʼaffiche avec ses attributs :

alice = Person("Alice", "Smith", 19)
print(alice)
Person(nom='Alice', prenom='Smith', age=19)

Le même avantage se retrouve lorsquʼon imprime des collections. Sans __repr__, une liste de personnes

afficherait des adresses mémoire illisibles. Avec __repr__, on lit directement le contenu :

groupe = [
 Person("Dupont", "Alice", 30),
 Person("Martin", "Bob", 22)
]
print(groupe)
[Person(nom='Dupont', prenom='Alice', age=30), Person(nom='Martin',
prenom='Bob', age=22)]

09_methodes_magiques.md 2025-11-01

3 / 11

On précise le périmètre dʼutilisation. On écrit __repr__ dès quʼun objet représente une entité métier que

lʼon va manipuler, inspecter, trier, journaliser ou tester.

On le privilégie dans tous les contextes pédagogiques et professionnels où lʼon veut comprendre

rapidement lʼétat dʼun objet au milieu dʼun flux dʼexécution.

On évite dʼy exposer des secrets ou des champs volumineux : par exemple, on ne place pas un jeton dʼAPI

ou un long binaire dans __repr__. On limite le contenu à ce qui caractérise lʼobjet et permet de raisonner

sur son état, ici nom, prenom et age.

__add__ ou lʼaddition

Partons de la même classe Person que précédemment, mais on souhaite additionner deux personnes.

Bizarre non ?

alice = Person("Alice", "Smith", 19)
john = Person("John", "Doe", 25)

print(alice + john)
TypeError: unsupported operand type(s) for +: 'Person' and 'Person'

Python lève une erreur, car il ne sait pas comment additionner deux objets Person.

Lʼopérateur + fonctionne très bien pour des entiers, des flottants ou des chaînes de caractères, car il a été

codé pour. Mais il nʼa aucune idée de ce que cela signifie pour une classe que nous avons nous-mêmes

créée.

Pour résoudre ce problème, on doit apprendre à Python ce que veut dire + dans ce contexte.

Cʼest le rôle de la méthode magique __add__.

Python appelle automatiquement cette méthode lorsquʼil rencontre lʼopérateur + entre deux objets.

Ainsi, alice + john revient à écrire alice.__add__(john).

Si cette méthode nʼexiste pas dans la classe, lʼinterpréteur ne sait pas quoi faire et renvoie lʼerreur quʼon

vient de voir.

On ajoute donc la méthode __add__ dans la classe Person :

class Person:
 def __init__(self, nom: str, prenom: str, age: int) -> None:
 self.nom = nom
 self.prenom = prenom
 self.age = age

 def __repr__(self) -> str:
 return f"Person(nom={self.nom!r}, prenom={self.prenom!r}, age=
{self.age!r})"

09_methodes_magiques.md 2025-11-01

4 / 11

 def __add__(self, other: 'Person') -> int:
 return self.age + other.age

Voir plus bas l'explication de l'annotation 'Person' dans la définition de la méthode __add__.

Cette méthode prend deux paramètres :

self : la première personne (alice dans notre exemple)

other : la seconde personne (john)

Elle retourne la somme des deux âges. Désormais, si on relance le code :

alice = Person("Alice", "Smith", 19)
john = Person("John", "Doe", 25)

print(alice + john)

Python exécute automatiquement :

alice.__add__(john)

et affiche :

44

Lʼopération + a donc maintenant un sens pour la classe Person.

Grâce à __add__, on a défini ce que “ lʼaddition” de deux personnes signifie dans notre programme : ici, la

somme de leurs âges.

On remarque que rien nʼempêche de choisir une autre interprétation. Si on voulait, __add__ pourrait

combiner les prénoms, créer un nouvel objet ou même renvoyer une phrase. Mais dans tous les cas, lʼidée

centrale reste la même : avec __add__, on enseigne à Python comment utiliser + entre deux objets dʼune

même classe.

Pourquoi 'Person' comme type de other ?

Lorsquʼon écrit la méthode suivante :

def __add__(self, other: 'Person') -> int:
 return self.age + other.age

09_methodes_magiques.md 2025-11-01

5 / 11

le type 'Person' est mis entre guillemets. Ce détail nʼest pas anodin : il sʼagit dʼune annotation de type

différée, aussi appelée Forward Reference (référence anticipée).

En Python, au moment où lʼinterpréteur lit la définition de la classe Person, celle-ci nʼest pas encore

complètement connue. Autrement dit, lorsquʼon définit les méthodes à lʼintérieur de la classe, le nom

Person nʼexiste pas encore comme type utilisable pour lʼannotation. Si on écrivait simplement :

def __add__(self, other: Person) -> int:

Python lèverait une erreur, car il ne reconnaîtrait pas encore le symbole Person au moment où il lit la

signature de la méthode.

Pour contourner ce problème, on place le nom du type entre guillemets :

'Person'

De cette façon, Python ne cherche pas immédiatement à évaluer ce nom comme une variable existante. Il le

garde sous forme de chaîne de caractères jusquʼà ce que la classe soit entièrement créée. Lʼinterpréteur

saura ensuite interpréter correctement cette annotation lorsquʼelle sera utilisée par les outils de typage

(comme mypy, VS Code, ou Pyright).

En résumé, on met 'Person' entre quotes pour indiquer à Python :

“Ce type nʼexiste pas encore au moment où tu lis ce code, mais il existera une fois la classe

entièrement définie.”

Depuis Python 3.7, on peut aussi activer ce comportement automatiquement pour tout le fichier en écrivant

tout en haut du script :

from __future__ import annotations

Avec cette instruction, il nʼest plus nécessaire de mettre des guillemets : Python retardera automatiquement

lʼévaluation de toutes les annotations. On pourrait alors écrire :

def __add__(self, other: Person) -> int:
 return self.age + other.age

Mais dans une optique pédagogique, utiliser 'Person' permet de montrer explicitement ce mécanisme de

référence anticipée, essentiel pour comprendre comment Python lit et interprète les annotations de type.

Exercice

Reprenez la classe Fraction et implémentez la méthode __add__ pour la classe Fraction.

09_methodes_magiques.md 2025-11-01

6 / 11

Petit aide:

Attention : une fraction PLUS une autre fraction retourne une NOUVELLE fraction.

Correction

class Fraction:
 def __init__(self, numerateur: int, denominateur: int) -> None:
 self.numerateur = numerateur
 self.denominateur = denominateur
 self.simplifier()

 def __repr__(self) -> str:
 return f"Fraction(numerateur={self.numerateur!r}, denominateur=
{self.denominateur!r})"

 def __add__(self, other: 'Fraction') -> 'Fraction':
 new_num = (self.numerateur * other.denominateur) +
(self.denominateur * other.numerateur)
 new_den = self.denominateur * other.denominateur
 return Fraction(new_num, new_den)

 def simplifier(self) -> None:
 pgcd = Fraction.pgcd(self.numerateur, self.denominateur)
 self.numerateur = self.numerateur // pgcd
 self.denominateur = self.denominateur // pgcd

 @staticmethod
 def pgcd(a: int, b: int) -> int:
 if b == 0:
 return a
 return Fraction.pgcd(b, a % b)

09_methodes_magiques.md 2025-11-01

7 / 11

__eq__ ou lʼégalité

Reprenons lʼexercice sur la gestion de tâches que vous avez fait, et de la liste de tâches, où chaque élément

est une instance de la classe Tache. On souhaite vérifier quʼune tâche nʼexiste pas déjà dans la liste avant

de lʼajouter. Intuitivement, on pourrait écrire :

if tache in liste_taches:
 print("Cette tâche existe déjà")

Mais en réalité, cette vérification ne se comporte pas comme on pourrait le croire.

Lorsquʼon écrit if tache in liste_taches:, Python parcourt chaque élément de la liste et vérifie un

par un avec ==. Autrement dit, il exécute successivement :

tache == liste_taches[0]
tache == liste_taches[1]
tache == liste_taches[2]
...

et ainsi de suite, jusquʼà trouver une égalité vraie ou atteindre la fin de la liste.

Si deux objets Tache possèdent exactement les mêmes attributs, par exemple le même titre et la même

date limite, Python les considère quand même comme différents, sauf si on lui apprend comment les

comparer.

Cela sʼexplique par le comportement par défaut de Python : lorsquʼaucune méthode spéciale de

comparaison nʼest définie, il ne compare pas les valeurs internes, mais les identités mémoire des objets,

autrement dit le résultat de la fonction id().

On peut le constater avec un exemple simple :

class Tache:
 def __init__(self, titre, description, date_limite):
 self.titre = titre
 self.description = description
 self.date_limite = date_limite

t1 = Tache("Ranger le bureau", "Faire un peu d’ordre")
t2 = Tache("Ranger le bureau", "Faire un peu d’ordre")

print(t1 == t2) # False
print(id(t1), id(t2)) # 14050592, 14050675

Bien que t1 et t2 aient exactement le même contenu, Python renvoie False, car ce sont deux objets

distincts en mémoire. id(t1) et id(t2) montrent deux adresses différentes : pour lui, ils ne sont pas

09_methodes_magiques.md 2025-11-01

8 / 11

“égaux”, même si leurs valeurs le sont.

Cʼest ici quʼintervient la méthode magique __eq__. Cette méthode est invoquée automatiquement lorsque

lʼon utilise lʼopérateur ==. Elle permet de définir le critère dʼégalité logique entre deux instances.

On peut alors enseigner à Python ce que signifie “deux tâches identiques” dans notre contexte. Par

exemple, on peut décider quʼune tâche est identique à une autre si son titre et sa date limite sont les

mêmes :

class Tache:
 def __init__(self, titre: str, description: str, date_limite: str) ->
None:
 self.titre = titre
 self.description = description
 self.date_limite = date_limite

 def __eq__(self, other: 'Tache') -> bool:
 if not isinstance(other, Tache):
 return False
 return self.titre == other.titre and self.date_limite ==
other.date_limite

Désormais, la comparaison se base sur les valeurs internes, pas sur les adresses mémoire :

t1 = Tache("Ranger le bureau", "Faire un peu d’ordre", "2025-10-19")
t2 = Tache("Ranger le bureau", "Faire un peu d’ordre", "2025-10-19")

print(t1 == t2) # True

Et, conséquence directe, la condition suivante fonctionnera comme prévu :

liste_taches = [t1]

if t2 in liste_taches:
 print("Cette tâche existe déjà")

Grâce à notre méthode __eq__, cette vérification devient pertinente : Python sait désormais que deux

objets sont considérés égaux si leurs valeurs internes correspondent, et non plus sʼils partagent la même

adresse mémoire.

Sans cette méthode, la vérification dʼexistence dʼune tâche dans la liste ne fonctionnerait jamais

correctement, car Python comparerait uniquement les identités des objets, pas leur contenu réel.

__mul__ et __rmul__

09_methodes_magiques.md 2025-11-01

9 / 11

Revenons à notre exemple de fraction. On souhaite pouvoir multiplier une fraction par un entier, par

exemple :

Si lʼon exécute :

f = Fraction(3, 4)
print(f * 2)

Python renvoie une erreur :

TypeError: unsupported operand type(s) for *: 'Fraction' and 'int'

Lʼinterpréteur ne sait pas comment multiplier une Fraction avec un int. Vous l'avez deviner, cʼest ici

quʼintervient la méthode magique __mul__.

La méthode __mul__ est appelée automatiquement lorsque Python rencontre lʼopérateur * avec lʼobjet

placé à gauche de lʼopération. Ainsi, f * 2 déclenche f.__mul__(2).

On implémente cette méthode dans la classe :

class Fraction:
 def __init__(self, numerateur: int, denominateur: int) -> None:
 self.numerateur = numerateur
 self.denominateur = denominateur

 def __repr__(self) -> str:
 return f"{self.numerateur}/{self.denominateur}"

 def __mul__(self, other: int) -> "Fraction":
 if isinstance(other, int):
 return Fraction(self.numerateur * other, self.denominateur)
 raise TypeError("Multiplication possible uniquement avec un
entier")

Désormais, la multiplication f * 2 fonctionne :

f = Fraction(3, 4)
print(f * 2) # 6/4

Python appelle f.__mul__(2) et crée une nouvelle fraction dont le numérateur est multiplié par 2.

Mais que se passe-t-il si lʼon inverse les opérandes ?

print(2 * f)

09_methodes_magiques.md 2025-11-01

10 / 11

Cette fois, Python renvoie à nouveau :

TypeError: unsupported operand type(s) for *: 'int' and 'Fraction'

La raison est simple : dans 2 * f, lʼobjet de gauche est un entier (int).

Python commence donc par appeler int.__mul__(f).

Or, la classe int nʼa aucune idée de ce quʼest un Fraction. Quand lʼopération échoue, Python nʼessaie

pas automatiquement lʼopération inverse, à moins quʼon lui dise comment faire.

Cʼest le rôle de la méthode magique __rmul__.

__rmul__ (Right Multiply) est invoquée lorsque lʼobjet de gauche ne sait pas gérer la multiplication.

Autrement dit, si 2 * f échoue, Python appellera f.__rmul__(2).

On lʼajoute donc à la classe :

class Fraction:
 def __init__(self, numerateur: int, denominateur: int) -> None:
 self.numerateur = numerateur
 self.denominateur = denominateur

 def __repr__(self) -> str:
 return f"{self.numerateur}/{self.denominateur}"

 def __mul__(self, other: int) -> "Fraction":
 if isinstance(other, int):
 return Fraction(self.numerateur * other, self.denominateur)
 raise TypeError("Multiplication possible uniquement avec un
entier")

 def __rmul__(self, other: int) -> "Fraction":
 return self.__mul__(other)

Et tous les méthodes magiques Rights sont implémentées en utilisant les méthodes magiques Lefts.

Ainsi :

f = Fraction(3, 4)
print(f * 2) # 6/4
print(2 * f) # 6/4

Les deux expressions produisent le même résultat. Dans le second cas (2 * f), Python essaie dʼabord

int.__mul__(f) (qui échoue), puis se rabat sur Fraction.__rmul__.

09_methodes_magiques.md 2025-11-01

11 / 11

Donc

�. f * 2 → Python appelle f.__mul__(2)
�. 2 * f → Python tente int.__mul__(f), échoue, puis appelle f.__rmul__(2)

Ces deux méthodes magiques permettent donc de rendre la classe Fraction symétrique dans son

comportement face à la multiplication, quelle que soit la position de la fraction dans lʼopération.

Cʼest un principe que lʼon retrouve dans beaucoup de classes numériques personnalisées : on implémente

__mul__ et __rmul__ ensemble pour que la multiplication soit cohérente dans les deux sens.

Conclusion

Les méthodes magiques, ou dunder methods, incarnent lʼun des aspects les plus élégants du langage

Python : sa capacité à rendre la logique métier aussi naturelle que le langage lui-même.

Elles permettent dʼintégrer ses propres classes au cœur du fonctionnement du langage, sans jamais

sacrifier la lisibilité. Grâce à elles, des opérations comme alice + john, tache in liste_taches, ou
2 * f cessent dʼêtre de simples instructions : elles deviennent des expressions de sens, où le code

raconte ce quʼil fait.

Ce pouvoir réside dans lʼidée que lʼon nʼinvente pas un nouveau vocabulaire pour chaque classe, mais quʼon

enseigne à Python comment parler le nôtre. On ne dit plus “appelle une méthode pour additionner deux

fractions” ; on écrit simplement f1 + f2. On ne crée pas une fonction comparer_taches(t1, t2) ; on

laisse lʼopérateur == traduire lʼintention.

Cette explicite immédiate rend le code plus lisible, plus fluide, et plus proche de la pensée humaine. On lit

du Python comme on lit une phrase. Cʼest là toute la beauté de ces méthodes spéciales : elles transforment

nos objets en citoyens à part entière du langage, capables de dialoguer naturellement avec ses structures,

ses opérateurs et ses conventions, tout en préservant cette philosophie fondamentale qui guide Python

depuis ses débuts : la clarté prime toujours sur la complexité cachée.

