09_methodes_magiques.md 2025-11-01

Les méthodes magiques ou Dunder methods

Introduction

Les « méthodes magiques », souvent appelées « dunder methods » car leurs noms sont entourés de deux
underscores, sont des points d'extension que Python invoque automatiquement pour intégrer nos objets

aux mécanismes du langage.

Elles ne sont pas destinées a étre appelées directement par I'utilisateur, mais par l'interpréteur lorsqu’'une
opération donnée survient.

Par exemple, l'initialisation d'un objet utilise , I'addition peut solliciter , la comparaison
, I'itération , et 'obtention d'une représentation textuelle ou

Grace a elles, on ne « colle » pas des fonctions autour d'une classe, on rend I'objet nativement compatible
avec les opérations usuelles de Python, ce qui améliore la lisibilité, le débogage et I'interopérabilité.

ou la représentation textuelle

On pose une classe simple, volontairement minimale, qui servira de fil rouge :

class Person:
def __init__ —> None:
self.nom = nom
self.prenom = prenom
self.age = age

Si on instancie puis on affiche une instance dans l'interpréteur interactif,

alice = Person("Alice", "Smith",)
print(alice)

on obtient généralement une forme peu informative qui ressemble a

Cette sortie est la représentation par défaut fournie par , et elle n'aide ni a comprendre |'état interne
de l'objet, ni a déboguer une collection d'objets.

On pourrait aussi utiliser pour afficher les attributs d'un objet, mais cela ne

rend pas le code plus lisible.

print(alice.__dict_)

1/11

09_methodes_magiques.md 2025-11-01

C'est exactement le réle de de corriger cela.
La méthode doit renvoyer une chaine de caractéres qui décrit I'objet de maniére non ambigué.

La convention en Python veut que cette représentation soit « non-ambigué et, si raisonnable, évaluable »,
c'est-a-dire qu'elle ressemble a une expression valide permettant de reconstruire I'objet.

En pratique, I'objectif principal reste le débogage : est utilisé par la fonction , par
I'affichage de I'objet en console interactive, par les conteneurs quand ils listent leurs éléments, et trés
souvent dans les journaux applicatifs. On écrit donc pour soi-méme et pour ses outils, afin de

voir rapidement les attributs-clés sans ouvrir un débogueur.

On I'implémente pas a pas sur notre classe. On commence par une version claire, compacte, et fidele aux

valeurs internes :

class Person:
def __init__ —> None:
self.nom = nom
self.prenom = prenom
self.age = age

def __repr__ > str:
return f"Person(nom={self.nom!r}, prenom={self.prenom!r}, age=
{self.age!r})"

Le suffixe dans les f-strings force I'utilisation de pour chaque champ, ce qui garantit I'ajout de
guillemets autour des chaines et une représentation sans ambiguité des valeurs.

Cette écriture évite des surprises comme des espaces manquants ou des chaines non citées, et elle reste
correcte méme si un attribut contient des caractéres spéciaux.

On observe maintenant le bénéfice immédiat. En console, s'affiche avec ses attributs :

alice = Person("Alice", "Smith",)
print(alice)
Person(nom='Alice', prenom='Smith', age=19)

Le méme avantage se retrouve lorsqu’on imprime des collections. Sans , une liste de personnes
afficherait des adresses mémoire illisibles. Avec , on lit directement le contenu :
groupe = [

Person("Dupont", "Alice",),
Person("Martin", "Bob",)

]

print(groupe)

[Person(nom="'Dupont', prenom='Alice', age=30), Person(nom='Martin',
prenom='Bob', age=22)]

2/11

09_methodes_magiques.md 2025-11-01

On précise le périmeétre d'utilisation. On écrit dés qu'un objet représente une entité métier que
I'on va manipuler, inspecter, trier, journaliser ou tester.

On le privilégie dans tous les contextes pédagogiques et professionnels ou I'on veut comprendre
rapidement I'état d'un objet au milieu d'un flux d'exécution.

On évite d'y exposer des secrets ou des champs volumineux : par exemple, on ne place pas un jeton d'API

ou un long binaire dans . On limite le contenu a ce qui caractérise I'objet et permet de raisonner
sur son état, ici , et
, ..
ou l'addition
Partons de la méme classe que précédemment, mais on souhaite additionner deux personnes.

Bizarre non ?

alice = Person("Alice", "Smith",)
john = Person("John", "Doe",)

print(alice + john)
TypeError: unsupported operand type(s) for +: 'Person' and 'Person'

Python léve une erreur, car il ne sait pas comment additionner deux objets

L'opérateur + fonctionne trés bien pour des entiers, des flottants ou des chaines de caracteres, car il a été
codé pour. Mais il n'a aucune idée de ce que cela signifie pour une classe que nous avons nous-mémes
créée.

Pour résoudre ce probléme, on doit apprendre a Python ce que veut dire + dans ce contexte.

C'est le rOle de la méthode magique

Python appelle automatiquement cette méthode lorsqu'il rencontre l'opérateur + entre deux objets.
Ainsi, revient a écrire

Si cette méthode n'existe pas dans la classe, l'interpréteur ne sait pas quoi faire et renvoie I'erreur qu‘on

vient de voir.

On ajoute donc la méthode dans la classe

class Person:
def __init__ —> None:
self.nom = nom
self.prenom = prenom
self.age = age

def __repr__ > str:
return f"Person(nom={self.nom!r}, prenom={self.prenom!r}, age=
{self.age!r})"

3/11

09_methodes_magiques.md 2025-11-01

def __add__ 'Person') —> int:
return self.age + other.age

Voir plus bas I'explication de |'annotation dans la définition de la méthode
Cette méthode prend deux parameétres :

. : la premiére personne (dans notre exemple)
. : la seconde personne ()

Elle retourne la somme des deux dges. Désormais, si on relance le code :
alice = Person("Alice", "Smith",)
john = Person("John", "Doe",)

print(alice + john)
Python exécute automatiquement :
alice.__add__(john)
et affiche :
44

L'opération + a donc maintenant un sens pour la classe

Grace a , on a défini ce que "lI'addition” de deux personnes signifie dans notre programme : ici, la

somme de leurs ages.

On remargue gue rien n'empéche de choisir une autre interprétation. Si on voulait, pourrait
combiner les prénoms, créer un nouvel objet ou méme renvoyer une phrase. Mais dans tous les cas, l'idée
centrale reste la méme : avec , on enseigne a Python comment utiliser + entre deux objets d'une
méme classe.

Pourquoi comme type de ?

Lorsqu’on écrit la méthode suivante :

def __add__ 'Person') —> int:
return self.age + other.age

4/11

09_methodes_magiques.md 2025-11-01

le type est mis entre guillemets. Ce détail n'est pas anodin : il s'agit d'une annotation de type
différée, aussi appelée Forward Reference (référence anticipée).

En Python, au moment ou l'interpréteur lit la définition de la classe , celle-ci n'est pas encore
complétement connue. Autrement dit, lorsqu’on définit les méthodes a I'intérieur de la classe, le nom
n'existe pas encore comme type utilisable pour I'annotation. Si on écrivait simplement :

def __add_ -> int:

Python léverait une erreur, car il ne reconnaitrait pas encore le symbole au moment ou il lit la

signature de la méthode.

Pour contourner ce probléme, on place le nom du type entre guillemets :
'"Person'

De cette fagcon, Python ne cherche pas immédiatement a évaluer ce nom comme une variable existante. Il le
garde sous forme de chaine de caractéres jusqu’a ce que la classe soit entierement créée. L'interpréteur
saura ensuite interpréter correctement cette annotation lorsqu’elle sera utilisée par les outils de typage
(comme mypy, VS Code, ou Pyright).

En résumé, on met entre quotes pour indiquer a Python :

“Ce type n'existe pas encore au moment ou tu lis ce code, mais il existera une fois la classe

entierement définie.”

Depuis Python 3.7, on peut aussi activer ce comportement automatiquement pour tout le fichier en écrivant
tout en haut du script :

from __ future__ import annotations

Avec cette instruction, il n'est plus nécessaire de mettre des guillemets : Python retardera automatiquement
|'évaluation de toutes les annotations. On pourrait alors écrire :

def __add__ —> int:
return self.age + other.age

Mais dans une optique pédagogique, utiliser permet de montrer explicitement ce mécanisme de
référence anticipée, essentiel pour comprendre comment Python lit et interpréte les annotations de type.
Exercice

Reprenez la classe et implémentez la méthode pour la classe

5/11

09_methodes_magiques.md 2025-11-01

Petit aide:
1 1 (1x4)+(3x1) 7
+ _ = =
3 4 3x4 12
(self.numerateur * other.denominateur) + (...)
self other
N ? self.denominateur * other.denominateur

tiers.__add__(quart)

Attention : une fraction PLUS une autre fraction retourne une NOUVELLE fraction.

Correction

class Fraction:
def __init___(self, numerateur: int, denominateur: int) —> None:
self.numerateur = numerateur
self.denominateur = denominateur
self.simplifier()

def __repr__(self) —> str:
return f"Fraction(numerateur={self.numerateur!r}, denominateur=
{self.denominateur!r})"

def __add__(self, other: 'Fraction') —> 'Fraction':
new_num = (self.numerateur x other.denominateur) +
(self.denominateur *x other.numerateur)
new_den = self.denominateur * other.denominateur
return Fraction(new_num, new_den)

def simplifier(self) —> None:
pgcd = Fraction.pgcd(self.numerateur, self.denominateur)
self.numerateur = self.numerateur // pgcd
self.denominateur = self.denominateur // pgcd

@staticmethod
def pgcd(a: int, b: int) —-> int:
if b == 0:
return a
return Fraction.pgcd(b, a % b)

6/11

09_methodes_magiques.md 2025-11-01

ou I'égalité

Reprenons I'exercice sur la gestion de tdches que vous avez fait, et de la liste de taches, ou chaque élément
est une instance de la classe . On souhaite vérifier qu'une tache n'existe pas déja dans la liste avant
de l'ajouter. Intuitivement, on pourrait écrire :

if tache in liste_taches:
print("Cette tache existe déja")

Mais en réalité, cette vérification ne se comporte pas comme on pourrait le croire.

Lorsqu’on écrit , Python parcourt chaque élément de la liste et vérifie un
par un avec ==. Autrement dit, il exécute successivement :

tache == liste_taches[0]
tache == liste_taches[1]
tache == liste_taches[2]

et ainsi de suite, jusqu’a trouver une égalité vraie ou atteindre la fin de la liste.

Si deux objets possédent exactement les mémes attributs, par exemple le méme titre et la méme
date limite, Python les considére quand méme comme différents, sauf si on lui apprend comment les
comparer.

Cela s'explique par le comportement par défaut de Python : lorsqu'aucune méthode spéciale de
comparaison n'est définie, il ne compare pas les valeurs internes, mais les identités mémoire des objets,
autrement dit le résultat de la fonction

On peut le constater avec un exemple simple :

class Tache:
def init
self.titre = titre
self.description = description
self.date_limite = date_limite

tl
t2

Tache("Ranger le bureau", "Faire un peu d’ordre")
Tache("Ranger le bureau", "Faire un peu d’ordre")

print(tl == t2) # False
print(id(tl), id(t2)) # 14050592, 14050675

Bien que et aient exactement le méme contenu, Python renvoie , car ce sont deux objets

distincts en mémoire. et montrent deux adresses différentes : pour lui, ils ne sont pas

7/11

09_methodes_magiques.md 2025-11-01

"égaux”, méme si leurs valeurs le sont.

C'est ici gu'intervient la méthode magique . Cette méthode est invoquée automatiquement lorsque
I'on utilise I'opérateur ==. Elle permet de définir le critére d'égalité logique entre deux instances.

On peut alors enseigner a Python ce que signifie “deux taches identiques” dans notre contexte. Par
exemple, on peut décider qu'une tache est identique a une autre si son titre et sa date limite sont les
mémes :

class Tache:
def _ init >
None:
self.titre = titre
self.description = description
self.date_limite = date_limite

def __eq__ 'Tache') —> bool:
if not isinstance(other, Tache):
return
return self.titre == other.titre and self.date_limite ==

other.date_limite

Désormais, la comparaison se base sur les valeurs internes, pas sur les adresses mémoire :

tl
t2

Tache("Ranger le bureau", "Faire un peu d’ordre", '"2025-10-19")
Tache("Ranger le bureau", "Faire un peu d’ordre", "2025-10-19")

print(tl == t2) # True

Et, conséquence directe, la condition suivante fonctionnera comme prévu :

liste_taches = [t1]

if t2 in liste_taches:
print("Cette tache existe déja")

Grace a notre méthode , cette vérification devient pertinente : Python sait désormais que deux
objets sont considérés égaux si leurs valeurs internes correspondent, et non plus s'ils partagent la méme
adresse mémoire.

Sans cette méthode, la vérification d'existence d'une tache dans la liste ne fonctionnerait jamais
correctement, car Python comparerait uniquement les identités des objets, pas leur contenu réel.

et

8/11

09_methodes_magiques.md 2025-11-01

Revenons a notre exemple de fraction. On souhaite pouvoir multiplier une fraction par un entier, par
exemple :

Sil'on exécute :

f = Fraction(3, 4)
print(f *x 2)

Python renvoie une erreur :

TypeError: unsupported operand (s) for *: 'Fraction' and 'int'

L'interpréteur ne sait pas comment multiplier une avec un . Vous |'avez deviner, c'est ici
gu'intervient la méthode magique

La méthode est appelée automatiquement lorsque Python rencontre I'opérateur * avec l'objet
placé a gauche de l'opération. Ainsi, déclenche

On implémente cette méthode dans la classe :

class Fraction:
def __init__ —> None:
self.numerateur = numerateur
self.denominateur = denominateur

def __repr__ —> str:
return f"{self.numerateur}/{self.denominateur}"

def __mul__ —> "Fraction":
if isinstance(other, int):
return Fraction(self.numerateur * other, self.denominateur)

raise TypeError("Multiplication possible uniquement avec un
entier")

Désormais, la multiplication fonctionne :

f = Fraction(3, 4)
print(f x 2) # 6/4

Python appelle et crée une nouvelle fraction dont le numérateur est multiplié par 2.

Mais que se passe-t-il sil'on inverse les opérandes ?

print(2 x f)

9/11

09_methodes_magiques.md 2025-11-01

Cette fois, Python renvoie a nouveau :

TypeError: unsupported operand (s) for *: 'int' and 'Fraction’

La raison est simple : dans , 'objet de gauche est un entier ().
Python commence donc par appeler

Or, la classe n'a aucune idée de ce qu'est un . Quand l'opération échoue, Python n'essaie

pas automatiquement l'opération inverse, a moins qu'on lui dise comment faire.
C'est le role de la méthode magique

(Right Multiply) est invoquée lorsque I'objet de gauche ne sait pas gérer la multiplication.
Autrement dit, si échoue, Python appellera

On l'ajoute donc ala classe :

class Fraction:
def __init__ —> None:
self.numerateur = numerateur
self.denominateur = denominateur

def __repr__ —> str:
return f"{self.numerateur}/{self.denominateur}"

def _mul__ —> "Fraction":
if isinstance(other, int):
return Fraction(self.numerateur * other, self.denominateur)
raise TypeError("Multiplication possible uniquement avec un
entier")

def __rmul__ —> "Fraction":
return self.__mul__(other)
Et tous les méthodes magiques Rights sont implémentées en utilisant les méthodes magiques Lefts.
Ainsi :
f = Fraction(3, 4)

print(f x 2) # 6/4
print(2 x f) # 6/4

Les deux expressions produisent le méme résultat. Dans le second cas (), Python essaie d'abord
(qui échoue), puis se rabat sur

10/11

09_methodes_magiques.md 2025-11-01

Donc
1. - Python appelle
2. - Python tente , échoue, puis appelle
Ces deux méthodes magiques permettent donc de rendre la classe symétrique dans son

comportement face a la multiplication, quelle que soit la position de la fraction dans l'opération.

C'est un principe que I'on retrouve dans beaucoup de classes numériques personnalisées : on implémente
et ensemble pour que la multiplication soit cohérente dans les deux sens.

Conclusion

Les méthodes magiques, ou dunder methods, incarnent I'un des aspects les plus élégants du langage
Python : sa capacité a rendre la logique métier aussi naturelle que le langage lui-méme.

Elles permettent d'intégrer ses propres classes au cceur du fonctionnement du langage, sans jamais
sacrifier la lisibilité. Grace a elles, des opérations comme , , ou
cessent d'étre de simples instructions : elles deviennent des expressions de sens, ou le code

raconte ce qu'il fait.

Ce pouvoir réside dans I'idée que I'on n'invente pas un nouveau vocabulaire pour chaque classe, mais qu‘on
enseigne a Python comment parler le nétre. On ne dit plus “appelle une méthode pour additionner deux
fractions” ; on écrit simplement . On ne crée pas une fonction ;on
laisse I'opérateur traduire l'intention.

Cette explicite immédiate rend le code plus lisible, plus fluide, et plus proche de la pensée humaine. On lit
du Python comme on lit une phrase. C'est la toute la beauté de ces méthodes spéciales : elles transforment
nos objets en citoyens a part entiére du langage, capables de dialoguer naturellement avec ses structures,
ses opérateurs et ses conventions, tout en préservant cette philosophie fondamentale qui guide Python
depuis ses débuts : la clarté prime toujours sur la complexité cachée.

11/11

