06_librairies_python.md 2025-11-01

Les librairies

Introduction

Une bibliotheque, ou librairie, en Python désigne un ensemble cohérent de modules préécrits destinés a
étendre les fonctionnalités du langage sans qu'il soit nécessaire de tout redévelopper soi-méme.

Chaque bibliotheque regroupe des fonctions, des classes et parfois des constantes permettant de résoudre
des problémes spécifiques, tels que le calcul scientifique, la manipulation de fichiers, le traitement de
données ou le développement web, comme nous I'avons défini dans le précédents chapitre.

Python repose sur un écosystéme tres vaste : a cdté de sa bibliotheque standard intégrée, qui couvre les
besoins fondamentaux (comme 05, , , ou), des milliers de bibliotheéques tierces
sont disponibles sur le dép6t officiel PyPl (Python Package Index), librement installables par les utilisateurs.

L'existence de ces bibliothéques participe a la popularité du langage. Elle transforme Python en un véritable
environnement modulaire : plutét que d'étre limité a un domaine particulier, il peut s'adapter a la quasi-
totalité des usages modernes.

Par exemple, on trouve et pour l'analyse et le calcul numérique, pour la
visualisation, ou pour le développement web, pour les communications HTTP,
pour les tests, ou encore et pour la manipulation avancée du temps.

Chacune de ces bibliothéques a été congue pour répondre a un besoin précis, en respectant la philosophie
de clarté et de simplicité du langage.

Sur le plan technique, une bibliothéque n’est rien d'autre qu'un ensemble de modules Python, c'est-a-dire
de fichiers structurés dans un répertoire muni d'un fichier signalant qu'il s'agit d'un
package. Lorsqu’on écrit ou , Python charge
dynamiguement le module concerné dans la mémoire de l'interpréteur et rend accessibles ses fonctions et
classes. Ce mécanisme d'importation, accompagné d'un systéme de gestion de dépendances (aujourd’hui
géré efficacement par UV ou pip), permet de composer librement ses outils pour batir des programmes
robustes et évolutifs.

Ainsi, comprendre les bibliotheques Python revient a comprendre la logique d'un écosystéme dans lequel
tout est modulaire : chaque module est une brique que I'on assemble pour répondre a un besoin précis, et
la bibliotheque constitue la collection organisée de ces briques, prétes a étre réutilisées et partagées.

Pypi.org

Le site PyPl.org, abréviation de Python Package Index, est le répertoire officiel ou sont stockées toutes les
bibliotheques Python disponibles publiquement. C'est un peu comme un magasin d'applications, mais pour
du code Python. Il joue le méme réle que npom pour JavaScript ou Maven Central pour Java. Sur PyPI, les
développeurs du monde entier peuvent publier et partager leurs bibliotheques (qu'on appelle aussi
"paquets" ou "packages"). Chaque paquet contient du code réutilisable, de la documentation, et la liste des
autres bibliothéques dont il a besoin pour fonctionner.

06_librairies_python.md 2025-11-01

Techniguement, PyPI est I'endroit ou les outils d'installation comme pip ou uv vont chercher les
bibliotheques quand on veut les installer. Par exemple, quand on tape la commande ou

, Voici ce qui se passe en coulisses : |'outil contacte PyPl.org, cherche la derniére
version du paquet requests, télécharge un fichier compressé (généralement au format ou),
puis installe les fichiers dans |I'environnement virtuel du projet. Tout cela se fait automatiquement. PyPI est
maintenu par la Python Software Foundation, ce qui garantit que les bibliotheques sont fiables et
sécurisées.

Chaque paquet publié sur PyPl possede une page d'information qu'on peut consulter sur le site. Ony
trouve le nom du paquet, sa version actuelle, les versions de Python avec lesquelles il est compatible, les
autres bibliothéques dont il dépend, une description de ce gu'il fait, la commande pour l'installer, et souvent
un lien vers son code source sur GitHub. Ces informations viennent du fichier ou

du projet. Cela permet de comprendre rapidement a quoi sert un paquet et de vérifier qu'il est
bien maintenu avant de l'installer.

PyPl est donc bien plus qu'une simple liste de bibliothéques : c'est un systéme qui permet de distribuer et
de partager du code Python a grande échelle. |l facilite la réutilisation du code, encourage la collaboration
entre développeurs, et garantit que tout le monde utilise le méme systéme de distribution. Grace a PyPI,
Python a pu construire un écosystéme tres riche, ou chaque développeur peut contribuer en publiant ses
propres bibliotheéques et en faire profiter la communauté entiére, le tout directement depuis la ligne de
commande.

Pathlib

La bibliotheque pathlib, introduite officiellement dans la bibliothéque standard de Python a partir de la
version 3.4, a profondément renouvelé la maniere de manipuler les chemins de fichiers et de répertoires.

Avant son apparition, la gestion des chemins reposait sur le module et ses sous-modules , qui
traitaient les chemins comme de simples chaines de caractéres. Cela entrainait souvent des erreurs de
concaténation, des différences de séparateurs entre systémes d'exploitation et un manque de lisibilité dans
les scripts. Avec , Python adopte une approche orientée objet qui transforme les chemins en
véritables objets manipulables, cohérents et portables.

L'élément central de cette bibliotheque est la classe . Elle représente un chemin de fichier ou de
dossier comme un objet doté de méthodes et d'attributs spécifiques. Lorsqu’on instancie un objet ,
celui-ci devient capable de décrire, interroger et manipuler I'arborescence du systeme de fichiers de
maniére naturelle. Par exemple :

from pathlib import Path

chemin = Path("/Users/Jean/Documents/rapport.txt")
print(chemin.name)

print(chemin.parent)

print(chemin.suffix)

print(chemin.stem)

Ces propriétés permettent d'obtenir immédiatement les différentes composantes d'un chemin sans avoir a
recourir a des découpages de chaines. L'objet ne se contente pas de représenter un chemin : il fournit

276

06_librairies_python.md 2025-11-01

également des méthodes utilitaires puissantes pour interagir avec le systeme de fichiers. On peut vérifier
I'existence d'un fichier avec , tester s'il s'agit d'un répertoire avec , ou créer des
dossiers avec . On peut également lire et écrire des fichiers en une seule ligne grace a

et

chemin = Path("notes.txt")
chemin.write_text("Introduction a pathlib")
print(chemin. read_text())

Le grand avantage de est sa portabilité. L'objet adapte automatiquement le format du
chemin a la plateforme sous-jacente : pour macOS et Linux, pour Windows.
Ainsi, le méme code s'exécute sans modification sur différents systemes, en respectant les conventions de
chacun (barres obliques / ou antislash \). De plus, s'integre parfaitement avec les modules de la
bibliotheque standard : on peut, par exemple, combiner avec , , ou sans

conversion préalable.

L'un des aspects les plus pratiques de est qu'il unifie la création, la lecture et la manipulation des
fichiers sous une syntaxe fluide. On peut ainsi construire des chemins a I'aide de l'opérateur /, créer des
répertoires ou des fichiers, parcourir des dossiers, ou encore modifier des extensions de maniere
expressive.

Considérons le code suivant, qui illustre ces usages fondamentaux :

from pathlib import Path

Créer un répertoire images

images_dir = Path("images")

images_dir.mkdir(exist_ok=True) # Créer le répertoire si il n'existe pas
sinon il ne fait rien

print("Répertoire 'images' créé.")

Créer un fichier image.jpg dans le répertoire images
image_file = images_dir / "image.jpg"

image_file.touch()

print("Fichier 'image.jpg' créé dans le répertoire 'images'.")

Changer l'extension de image.jpg en image.png

image_png = image_file.with_suffix(".png")
image_file.rename(image_png)

print(f"L'extension du fichier a été modifiée en : {image_png}")

Lister tous les fichiers dans le répertoire images
print("Fichiers dans le répertoire 'images' :")
for fichier in images_dir.iterdir():
if fichier.is_file():
print(fichier.name)

Vérifier si nouveau_nom.txt existe dans le répertoire courant
fichier_nouveau = Path("nouveau_nom.txt")

3/6

06_librairies_python.md 2025-11-01

if fichier_nouveau.exists():
print(f'Le fichier {fichier_nouveau} existe.")
else:
print(f"Le fichier {fichier_nouveau} n'existe pas.")

Créer un répertoire documents et ajouter des fichiers .txt
documents_dir = Path("documents")
documents_dir.mkdir(exist_ok=)

Créer quelques fichiers .txt

(documents_dir / "filel.txt").touch()
(documents_dir / "file2.txt").touch()
(documents_dir / "file3.txt").touch()

Lister tous les fichiers .txt dans le répertoire documents

print("Fichiers .txt dans le répertoire 'documents' :")

for fichier in documents_dir.glob("x.txt"):
print(fichier.name)

Dans cet exemple, crée un objet représentant un répertoire virtuel nommé images.

La méthode le crée effectivement sur le disque, tandis que évite une erreur sile
dossier existe déja.

L'opérateur / permet de composer un chemin en combinant naturellement des segments, ici

La méthode crée un fichier vide, et génere un nouveau chemin identique, mais

avec une extension différente, avant que ne le renomme physiquement.
Les méthodes et permettent de parcourir les fichiers d'un répertoire.

renvoie tous les éléments (fichiers et sous-dossiers), tandis que applique un
filtrage selon un motif. L'appel a permet de vérifier la présence d'un fichier avant toute opération,
renforgant la robustesse du code.

Par cette approche, offre une syntaxe expressive et sécurisée, transformant les manipulations de
fichiers en opérations naturelles, intuitives et indépendantes du systéme sous-jacent. On ne travaille plus
avec des chaines de caractéres mais avec des objets cohérents, capables de se combiner, de s'interroger
et d'agir directement sur le systéme de fichiers.

Pendulum

La bibliotheque Pendulum constitue une alternative moderne et élégante au module standard
Concgue pour corriger ses faiblesses et en simplifier 'usage, elle offre une interface plus intuitive, un
comportement cohérent face aux fuseaux horaires, ainsi qu'une syntaxe naturelle pour les calculs et les
formats de dates. La ou requiert souvent la combinaison de plusieurs modules (,

,), Pendulum réunit toutes ces fonctionnalités dans une seule librairie, tout en
garantissant une compatibilité totale avec les objets natifs de Python.

4/6

06_librairies_python.md 2025-11-01

uv add pendulum

L'un des atouts majeurs de Pendulum réside dans sa gestion automatique des fuseaux horaires. Lorsqu'on
crée un objet de date, il est timezone-aware par défaut, c’'est-a-dire qu’il contient déja une information de
fuseau, ce qui évite les erreurs fréquentes de conversion ou de comparaison entre instants localisés
différemment. De plus, la création, la manipulation et la mise en forme des dates y deviennent beaucoup
plus expressives. Par exemple :

import pendulum

Obtenir la date et 1'heure actuelles
maintenant = pendulum.now()
print("Heure locale :", maintenant)

Spécifier un fuseau horaire
paris = pendulum.now("Europe/Paris")
tokyo = pendulum.now("Asia/Tokyo")

print("Heure a Paris , paris)
print("Heure a Tokyo :", tokyo)

Créer une date spécifique
evenement = pendulum.datetime(c C 0 c , tz="Europe/Paris")
print("Evénement :", evenement)

Ajouter ou soustraire du temps
print("Dans 10 jours :", evenement.add(days=10))
print("I1 y a 3 heures :", evenement.subtract(hours=3))

Calculer la différence entre deux dates
diff = evenement.diff(paris)
print("Différence :", diff.in_days(), "jours")

Afficher une durée dans un format humain
print("Evénement dans :", evenement.diff_for_humans())

Dans cet exemple, chaque opération se lit presque comme une phrase : ou

expriment directement l'intention. La méthode illustre bien
cette approche orientée lisibilité : elle renvoie une durée exprimée dans un langage naturel, tel que “ily a 2
heures” ou “dans 3 jours”, ce qui s'avere extrémement utile pour des applications affichant du temps relatif.

Pendulum excelle aussi dans la précision et la cohérence des calculs calendaires. Contrairement a

, il gére correctement les mois, années, transitions d’heure d'été, et conversions entre zones. La
méthode ajoute réellement un mois calendaire, et non trente jours arbitraires. De plus, il
introduit des objets spécialisés comme ou qui permettent de raisonner sur des
intervalles de temps avec une granularité fine.

5/6

06_librairies_python.md 2025-11-01

Enfin, Pendulum améliore I'expérience développeur : ses objets sont immuables, ses méthodes chainables,
et sa syntaxe minimaliste rappelle I'élégance des langages déclaratifs. On peut ainsi écrire :

pendulum.parse('"2025-10-
19T14:30:00Z").in_timezone("Europe/Paris").add(days=5)

ce qui produit une opération compléte en une seule ligne, lisible et robuste.

En somme, Pendulum se distingue par une conception claire et pragmatique : rendre la manipulation du
temps expressive, fiable et exempte d'ambiguités. La ou reste fidele a la logique interne du
langage, Pendulum s’oriente vers I'expérience humaine du temps, conciliant rigueur technique et lisibilité,
dans le plus pur esprit “Pythonic”.

6/6

