
06_librairies_python.md 2025-11-01

1 / 6

Les librairies

Introduction

Une bibliothèque, ou librairie, en Python désigne un ensemble cohérent de modules préécrits destinés à

étendre les fonctionnalités du langage sans quʼil soit nécessaire de tout redévelopper soi-même.

Chaque bibliothèque regroupe des fonctions, des classes et parfois des constantes permettant de résoudre

des problèmes spécifiques, tels que le calcul scientifique, la manipulation de fichiers, le traitement de

données ou le développement web, comme nous l'avons défini dans le précédents chapitre.

Python repose sur un écosystème très vaste : à côté de sa bibliothèque standard intégrée, qui couvre les

besoins fondamentaux (comme os, math, datetime, json ou csv), des milliers de bibliothèques tierces

sont disponibles sur le dépôt officiel PyPI (Python Package Index), librement installables par les utilisateurs.

Lʼexistence de ces bibliothèques participe à la popularité du langage. Elle transforme Python en un véritable

environnement modulaire : plutôt que dʼêtre limité à un domaine particulier, il peut sʼadapter à la quasi-

totalité des usages modernes.

Par exemple, on trouve pandas et numpy pour lʼanalyse et le calcul numérique, matplotlib pour la

visualisation, Flask ou Django pour le développement web, requests pour les communications HTTP,

pytest pour les tests, ou encore pytz et dateutil pour la manipulation avancée du temps.

Chacune de ces bibliothèques a été conçue pour répondre à un besoin précis, en respectant la philosophie

de clarté et de simplicité du langage.

Sur le plan technique, une bibliothèque nʼest rien dʼautre quʼun ensemble de modules Python, cʼest-à-dire

de fichiers .py structurés dans un répertoire muni dʼun fichier __init__.py signalant quʼil sʼagit dʼun

package. Lorsquʼon écrit import math ou from datetime import date, Python charge

dynamiquement le module concerné dans la mémoire de lʼinterpréteur et rend accessibles ses fonctions et

classes. Ce mécanisme dʼimportation, accompagné dʼun système de gestion de dépendances (aujourdʼhui

géré efficacement par UV ou pip), permet de composer librement ses outils pour bâtir des programmes

robustes et évolutifs.

Ainsi, comprendre les bibliothèques Python revient à comprendre la logique dʼun écosystème dans lequel

tout est modulaire : chaque module est une brique que lʼon assemble pour répondre à un besoin précis, et

la bibliothèque constitue la collection organisée de ces briques, prêtes à être réutilisées et partagées.

Pypi.org

Le site PyPI.org, abréviation de Python Package Index, est le répertoire officiel où sont stockées toutes les

bibliothèques Python disponibles publiquement. C'est un peu comme un magasin d'applications, mais pour

du code Python. Il joue le même rôle que npm pour JavaScript ou Maven Central pour Java. Sur PyPI, les

développeurs du monde entier peuvent publier et partager leurs bibliothèques (qu'on appelle aussi

"paquets" ou "packages"). Chaque paquet contient du code réutilisable, de la documentation, et la liste des

autres bibliothèques dont il a besoin pour fonctionner.

06_librairies_python.md 2025-11-01

2 / 6

Techniquement, PyPI est l'endroit où les outils d'installation comme pip ou uv vont chercher les

bibliothèques quand on veut les installer. Par exemple, quand on tape la commande uv add requests ou

pip install requests, voici ce qui se passe en coulisses : l'outil contacte PyPI.org, cherche la dernière

version du paquet requests, télécharge un fichier compressé (généralement au format .whl ou .tar.gz),
puis installe les fichiers dans l'environnement virtuel du projet. Tout cela se fait automatiquement. PyPI est

maintenu par la Python Software Foundation, ce qui garantit que les bibliothèques sont fiables et

sécurisées.

Chaque paquet publié sur PyPI possède une page d'information qu'on peut consulter sur le site. On y

trouve le nom du paquet, sa version actuelle, les versions de Python avec lesquelles il est compatible, les

autres bibliothèques dont il dépend, une description de ce qu'il fait, la commande pour l'installer, et souvent

un lien vers son code source sur GitHub. Ces informations viennent du fichier pyproject.toml ou

setup.cfg du projet. Cela permet de comprendre rapidement à quoi sert un paquet et de vérifier qu'il est

bien maintenu avant de l'installer.

PyPI est donc bien plus qu'une simple liste de bibliothèques : c'est un système qui permet de distribuer et

de partager du code Python à grande échelle. Il facilite la réutilisation du code, encourage la collaboration

entre développeurs, et garantit que tout le monde utilise le même système de distribution. Grâce à PyPI,

Python a pu construire un écosystème très riche, où chaque développeur peut contribuer en publiant ses

propres bibliothèques et en faire profiter la communauté entière, le tout directement depuis la ligne de

commande.

Pathlib

La bibliothèque pathlib, introduite officiellement dans la bibliothèque standard de Python à partir de la

version 3.4, a profondément renouvelé la manière de manipuler les chemins de fichiers et de répertoires.

Avant son apparition, la gestion des chemins reposait sur le module os et ses sous-modules os.path, qui
traitaient les chemins comme de simples chaînes de caractères. Cela entraînait souvent des erreurs de

concaténation, des différences de séparateurs entre systèmes dʼexploitation et un manque de lisibilité dans

les scripts. Avec pathlib, Python adopte une approche orientée objet qui transforme les chemins en

véritables objets manipulables, cohérents et portables.

Lʼélément central de cette bibliothèque est la classe Path. Elle représente un chemin de fichier ou de

dossier comme un objet doté de méthodes et dʼattributs spécifiques. Lorsquʼon instancie un objet Path,
celui-ci devient capable de décrire, interroger et manipuler lʼarborescence du système de fichiers de

manière naturelle. Par exemple :

from pathlib import Path

chemin = Path("/Users/Jean/Documents/rapport.txt")
print(chemin.name) # rapport.txt
print(chemin.parent) # /Users/Jean/Documents
print(chemin.suffix) # .txt
print(chemin.stem) # rapport

Ces propriétés permettent dʼobtenir immédiatement les différentes composantes dʼun chemin sans avoir à

recourir à des découpages de chaînes. Lʼobjet Path ne se contente pas de représenter un chemin : il fournit

06_librairies_python.md 2025-11-01

3 / 6

également des méthodes utilitaires puissantes pour interagir avec le système de fichiers. On peut vérifier

lʼexistence dʼun fichier avec exists(), tester sʼil sʼagit dʼun répertoire avec is_dir(), ou créer des

dossiers avec mkdir(). On peut également lire et écrire des fichiers en une seule ligne grâce à

read_text() et write_text() :

chemin = Path("notes.txt")
chemin.write_text("Introduction à pathlib")
print(chemin.read_text())

Le grand avantage de pathlib est sa portabilité. Lʼobjet Path adapte automatiquement le format du

chemin à la plateforme sous-jacente : PosixPath pour macOS et Linux, WindowsPath pour Windows.

Ainsi, le même code sʼexécute sans modification sur différents systèmes, en respectant les conventions de

chacun (barres obliques / ou antislash \). De plus, pathlib sʼintègre parfaitement avec les modules de la

bibliothèque standard : on peut, par exemple, combiner Path avec open(), json, csv ou shutil sans

conversion préalable.

Lʼun des aspects les plus pratiques de Path est quʼil unifie la création, la lecture et la manipulation des

fichiers sous une syntaxe fluide. On peut ainsi construire des chemins à lʼaide de lʼopérateur /, créer des
répertoires ou des fichiers, parcourir des dossiers, ou encore modifier des extensions de manière

expressive.

Considérons le code suivant, qui illustre ces usages fondamentaux :

from pathlib import Path

Créer un répertoire images
images_dir = Path("images")
images_dir.mkdir(exist_ok=True) # Créer le répertoire si il n'existe pas
sinon il ne fait rien
print("Répertoire 'images' créé.")

Créer un fichier image.jpg dans le répertoire images
image_file = images_dir / "image.jpg"
image_file.touch()
print("Fichier 'image.jpg' créé dans le répertoire 'images'.")

Changer l'extension de image.jpg en image.png
image_png = image_file.with_suffix(".png")
image_file.rename(image_png)
print(f"L'extension du fichier a été modifiée en : {image_png}")

Lister tous les fichiers dans le répertoire images
print("Fichiers dans le répertoire 'images' :")
for fichier in images_dir.iterdir():
 if fichier.is_file():
 print(fichier.name)

Vérifier si nouveau_nom.txt existe dans le répertoire courant
fichier_nouveau = Path("nouveau_nom.txt")

06_librairies_python.md 2025-11-01

4 / 6

if fichier_nouveau.exists():
 print(f"Le fichier {fichier_nouveau} existe.")
else:
 print(f"Le fichier {fichier_nouveau} n'existe pas.")

Créer un répertoire documents et ajouter des fichiers .txt
documents_dir = Path("documents")
documents_dir.mkdir(exist_ok=True)

Créer quelques fichiers .txt
(documents_dir / "file1.txt").touch()
(documents_dir / "file2.txt").touch()
(documents_dir / "file3.txt").touch()

Lister tous les fichiers .txt dans le répertoire documents
print("Fichiers .txt dans le répertoire 'documents' :")
for fichier in documents_dir.glob("*.txt"):
 print(fichier.name)

Dans cet exemple, Path("images") crée un objet représentant un répertoire virtuel nommé images.

La méthode mkdir() le crée effectivement sur le disque, tandis que exist_ok=True évite une erreur si le

dossier existe déjà.

Lʼopérateur / permet de composer un chemin en combinant naturellement des segments, ici images_dir
/ "image.jpg".

La méthode touch() crée un fichier vide, et with_suffix() génère un nouveau chemin identique, mais

avec une extension différente, avant que rename() ne le renomme physiquement.

Les méthodes iterdir() et glob() permettent de parcourir les fichiers dʼun répertoire.

iterdir() renvoie tous les éléments (fichiers et sous-dossiers), tandis que glob("*.txt") applique un

filtrage selon un motif. Lʼappel à exists() permet de vérifier la présence dʼun fichier avant toute opération,

renforçant la robustesse du code.

Par cette approche, pathlib offre une syntaxe expressive et sécurisée, transformant les manipulations de

fichiers en opérations naturelles, intuitives et indépendantes du système sous-jacent. On ne travaille plus

avec des chaînes de caractères mais avec des objets cohérents, capables de se combiner, de sʼinterroger

et dʼagir directement sur le système de fichiers.

Pendulum

La bibliothèque Pendulum constitue une alternative moderne et élégante au module standard datetime.
Conçue pour corriger ses faiblesses et en simplifier lʼusage, elle offre une interface plus intuitive, un

comportement cohérent face aux fuseaux horaires, ainsi quʼune syntaxe naturelle pour les calculs et les

formats de dates. Là où datetime requiert souvent la combinaison de plusieurs modules (pytz,
dateutil, calendar), Pendulum réunit toutes ces fonctionnalités dans une seule librairie, tout en

garantissant une compatibilité totale avec les objets datetime natifs de Python.

06_librairies_python.md 2025-11-01

5 / 6

uv add pendulum

Lʼun des atouts majeurs de Pendulum réside dans sa gestion automatique des fuseaux horaires. Lorsquʼon

crée un objet de date, il est timezone-aware par défaut, cʼest-à-dire quʼil contient déjà une information de

fuseau, ce qui évite les erreurs fréquentes de conversion ou de comparaison entre instants localisés

différemment. De plus, la création, la manipulation et la mise en forme des dates y deviennent beaucoup

plus expressives. Par exemple :

import pendulum

Obtenir la date et l'heure actuelles
maintenant = pendulum.now()
print("Heure locale :", maintenant)

Spécifier un fuseau horaire
paris = pendulum.now("Europe/Paris")
tokyo = pendulum.now("Asia/Tokyo")

print("Heure à Paris :", paris)
print("Heure à Tokyo :", tokyo)

Créer une date spécifique
evenement = pendulum.datetime(2025, 10, 19, 14, 30, tz="Europe/Paris")
print("Événement :", evenement)

Ajouter ou soustraire du temps
print("Dans 10 jours :", evenement.add(days=10))
print("Il y a 3 heures :", evenement.subtract(hours=3))

Calculer la différence entre deux dates
diff = evenement.diff(paris)
print("Différence :", diff.in_days(), "jours")

Afficher une durée dans un format humain
print("Événement dans :", evenement.diff_for_humans())

Dans cet exemple, chaque opération se lit presque comme une phrase : add(days=10) ou

diff_for_humans() expriment directement lʼintention. La méthode diff_for_humans() illustre bien

cette approche orientée lisibilité : elle renvoie une durée exprimée dans un langage naturel, tel que “il y a 2

heures” ou “dans 3 jours”, ce qui sʼavère extrêmement utile pour des applications affichant du temps relatif.

Pendulum excelle aussi dans la précision et la cohérence des calculs calendaires. Contrairement à

datetime, il gère correctement les mois, années, transitions dʼheure dʼété, et conversions entre zones. La

méthode add(months=1) ajoute réellement un mois calendaire, et non trente jours arbitraires. De plus, il

introduit des objets spécialisés comme Duration ou Period qui permettent de raisonner sur des

intervalles de temps avec une granularité fine.

06_librairies_python.md 2025-11-01

6 / 6

Enfin, Pendulum améliore lʼexpérience développeur : ses objets sont immuables, ses méthodes chaînables,

et sa syntaxe minimaliste rappelle lʼélégance des langages déclaratifs. On peut ainsi écrire :

pendulum.parse("2025-10-
19T14:30:00Z").in_timezone("Europe/Paris").add(days=5)

ce qui produit une opération complète en une seule ligne, lisible et robuste.

En somme, Pendulum se distingue par une conception claire et pragmatique : rendre la manipulation du

temps expressive, fiable et exempte dʼambiguïtés. Là où datetime reste fidèle à la logique interne du

langage, Pendulum sʼoriente vers lʼexpérience humaine du temps, conciliant rigueur technique et lisibilité,

dans le plus pur esprit “Pythonic”.

