Exercice : Travailler avec les dictionnaires en Python

Dans cet exercice, tu vas appliquer les notions sur les dictionnaires que tu viens de voir.
L'objectif est de manipuler les dictionnaires pour gérer des données, les modifier et les
parcourir.

Contexte

Tu travailles pour une entreprise de voyages et tu es chargé de gérer les informations
concernant les différentes destinations disponibles, ainsi que les clients intéressés par ces
destinations. Toutes les données doivent étre stockées dans des dictionnaires.

Objectifs

1. Créer un dictionnaire contenant des informations sur plusieurs destinations (nom de
la ville, nombre de réservations).

2. Gérer les réservations pour chaque destination.

Afficher les informations sur les destinations disponibles et les clients.

4. Appliquer des modifications sur les dictionnaires en utilisant des boucles et des
méthodes propres aux dictionnaires.

w

Instructions
1. Créer un dictionnaire de destinations

Crée un dictionnaire destinations avec au moins 3 villes (clés) et le nombre de
réservations associées (valeurs).

2. Ajouter des nouvelles destinations
Ajoute au moins deux nouvelles destinations avec un nombre initial de réservations égal a 0.
3. Mettre a jour les réservations

Ecris une fonction ajoute_reservations(destinations, ville, nombre) qui
prend en paramétre le dictionnaire des destinations, le nom de la ville, et le nombre de
nouvelles réservations a ajouter. Mets a jour le dictionnaire en conséquence.

4. Supprimer une destination

Supprime une destination du dictionnaire. Fais en sorte que la destination supprimée soit
renvoyée sous forme de tuple (clé, valeur).

5. Afficher les destinations disponibles

Affiche toutes les destinations et le nombre de réservations associées en parcourant le
dictionnaire a l'aide d'une boucle for.

6. Trier les destinations

Trie les destinations par ordre de nombre de réservations, puis affiche le résultat.

7. Gérer les clients

Crée un dictionnaire clients avec pour clés les noms des clients et pour valeurs la
destination qu'ils souhaitent réserver. Ecris une fonction associe_client(clients,
nom_client, destination) pour associer un client a une destination.

8. Afficher les clients et leurs destinations

Affiche chaque client ainsi que la destination qu'il a choisie en parcourant le dictionnaire
clients.

Contraintes

e Utilise au moins une fois chacune des méthodes suivantes sur les dictionnaires :
.update(), .pop(), .popitem(), .keys(), .values(), et .items().

e Assure-toi de gérer les cas ou une clé n'existe pas dans le dictionnaire (par exemple,
une destination non valide ou un client non inscrit).

Exercice : Manipulation avancée des boucles et générateurs en Python

Exercice :

1. Créez un générateur gen_carrés(n) qui génére les carrés des nombres de 1 a n.

2. Parcourez les résultats du générateur avec une boucle for et affichez chaque carré,
mais arrétez la boucle dés que vous atteignez un carré supérieur a 50 grace a
break.

3. Utilisez continue pourignorer les carrés pairs et n'affichez que les carrés impairs.

Parcourez une liste d'entiers en sens inverse de deux facons différentes.
5. Afficher a la fois l'index et la valeur de chaque élément d'une liste.

B

Exercice : Manipulation de chaines de caractéres

Ecrire un programme qui prend une chaine de caractéres saisie par |'utilisateur et effectue
les taches suivantes :

1. Afficher la chaine d'origine.
2. Afficher la longueur de la chaine.
3. Afficher la chaine avec tous les caractéres en majuscules.

o

8.

Afficher la chaine avec tous les caractéres en minuscules.

Afficher la chaine inversée.

Remplacer toutes les occurrences d'un mot spécifique (saisies par I'utilisateur) par
un autre mot (saisi par l'utilisateur).

Compter le nombre d'occurrences d'un mot spécifique (saisi par I'utilisateur) dans la
chaine.

Afficher la chaine sans espaces en début et en fin.

Résultats attendus

La chaine d'origine affichée.

La longueur de la chaine.

La chaine en majuscules.

La chaine en minuscules.

La chaine inversée.

La chaine avec le mot remplacé.

Le nombre d'occurrences du mot spécifié.
La chaine sans espaces en début et en fin.

Remarque : N'oubliez pas de gérer les cas ou le mot a remplacer ou a compter n'est pas
trouvé dans la chaine.

Exercice : Gestion de Contacts

Objectif : Créer une application simple pour gérer une liste de contacts.

Etapes a suivre :

1.

Définir une classe Contact :
o La classe doit avoir des attributs pour le nom, le numéro de téléphone et
I'email.
o Ajouter une méthode pour afficher les informations du contact.
Créer une fonction ajouter_contact:
o Cette fonction doit prendre en paramétres une liste de contacts et un contact,
puis ajouter ce dernier a la liste.
o La fonction doit vérifier que le contact n'existe pas déja dans la liste (vous
pouvez définir I'égalité des contacts par le nom ou un autre attribut).
Créer une fonction supprimer_contact :
o Cette fonction doit prendre en parameétres une liste de contacts et un nom de
contact, puis supprimer le contact de la liste.
Créer une fonction chercher_contact :
o Cette fonction doit prendre en paramétres une liste de contacts et un nom,
puis retourner le contact correspondant.
Créer une fonction afficher_contacts:
o Cette fonction doit afficher tous les contacts dans la liste.

6.

Tests :
o Ecrire des tests pour chaque fonction pour vérifier leur bon fonctionnement.
o Utiliser des assertions pour s'assurer que les résultats sont conformes aux
attentes.

Exercice : Gestion de la Bibliothéque

Vous devez créer un programme pour gerer une bibliotheque. Votre programme doit
permettre a un utilisateur d'ajouter des livres, de les supprimer, de trier la liste des livres, et
d'afficher les livres en fonction de certains critéres.

Etapes a suivre :

1.
2.

w

Créer une liste vide pour stocker les titres des livres.

Ajouter des livres a la liste (demandez a I'utilisateur d'entrer le titre d'un livre).
Assurez-vous que le titre n'est pas déja dans la liste.

Afficher la liste des livres.

Supprimer un livre de la liste en demandant a l'utilisateur d'entrer le titre du livre a
supprimer. Assurez-vous que le livre existe dans la liste avant de le supprimer.
Trier la liste des livres par ordre alphabétique.

Afficher le nombre total de livres dans la bibliothéque.

Afficher les livres qui contiennent un mot spécifique (demandez a I'utilisateur
d'entrer un mot).

Créer une fonction qui prend en parameétre une liste de livres et qui renvoie une
nouvelle liste contenant uniquement les livres qui commencent par une lettre
spécifique (demandez a l'utilisateur d'entrer la lettre).

Terminer le programme lorsque I'utilisateur entre "exit".

Exercice : Gestion des Fichiers et JSON

Partie 1 : Gestion des Chemins

1.

Définissez un chemin de fichier pour votre systéme d'exploitation :
o Pour Windows : chemin =
"C:\Users\VotreNom\Documents\mon_fichier.txt"
o Pour macOS/Linux : chemin =
"/Users/VotreNom/Documents/mon_fichier.txt"
o Utilisez un préfixe r pour éviter les erreurs liées aux slashs.

2. Affichez le chemin du fichier.

Partie 2 : Lecture et Ecriture de Fichiers

1. Créez un fichier texte et écrivez-y trois lignes de texte.
o Utilisez le mode ecriture pour écrire dans le fichier.
2. Ouvrez le fichier en mode lecture et lisez son contenu :
o Affichez le contenu a I'écran.
3. Récupérez chaque ligne dans une liste et affichez cette liste.

Partie 3 : Utilisation des Curseurs

1. Aprés avoir lu le contenu du fichier, remettez le curseur au début du fichier.
2. Lisez de nouveau le fichier et affichez le contenu.
3. Affichez uniquement les 10 premiers caractéres du fichier.

Partie 4 : JSON

Créez un fichier JSON (settings. json) avec le contenu suivant :
json

Copier le code

{

"fontsize": 20,
"theme": "light"

Récupérez les données du fichier JSON et affichez la valeur de fontsize.
Modifiez fontsize a 15 et sauvegardez les modifications dans le fichier JSON.
Ajoutez un nouvel attribut 1anguage avec la valeur "French" a votre fichier

JSON, puis sauvegardez-le.
5. Pour vérifier, rouvrez le fichier JSON et affichez son contenu.

b=

Exercice : Pratique des Modules os et pathlib
Objectif

Cet exercice a pour but de vous familiariser avec les opérations sur les fichiers et répertoires
en utilisant les modules os et pathlib. Vous allez créer, lire, renommer, et supprimer des
fichiers et répertoires.

Partie 1 : Création de fichiers et de répertoires

1. Créer un fichier texte :

o Créez un fichier nommé notes. txt et écrivez-y trois lignes de texte.
2. Créer un répertoire :
o Créez un répertoire nommé mon_dossier.

Partie 2 : Lecture et suppression

1. Lire le contenu du fichier :

o Ouvrez notes. txt et lisez son contenu. Affichez chaque ligne.
2. Supprimer le fichier :

o Supprimez le fichier notes. txt.
3. Supprimer le répertoire :

o Supprimez le répertoire mon_dossier.

Partie 3 : Renommage et informations sur les fichiers

1. Créer un nouveau fichier :

o Créez un fichier nommé ancien_nom. txt et écrivez-y une ligne de texte.
2. Renommer le fichier :

o Renommez ancien_nom.txt en nouveau_nom.txt.
3. Obtenir des informations sur le fichier :

o Affichez la taille et la date de derniére modification de nouveau_nom. txt.

Partie 4 : Utilisation de pathlib

1. Créer un nouveau répertoire :
o Créez un répertoire images.
2. Créer un fichier dans le répertoire :
o Créez un fichier image . jpg dans le répertoire images.
Modifier I'extension du fichier :
o Changez l'extension de image. jpg en image. png.
4. Lister les fichiers dans le répertoire :
o Listez tous les fichiers dans le répertoire images et affichez leurs noms.
5. Veérifier si le fichier existe :
o Vérifiez si nouveau_nom. txt existe dans le répertoire courant et affichez un
message approprie.

w

Partie 5 : Itération sur les fichiers

1. Itérer sur tous les fichiers . txt dans un répertoire (vous pouvez créer un
répertoire documents pour cet exercice) :
o Créez le répertoire documents et ajoutez-y quelques fichiers . txt.
o Ecrivez un code qui liste tous les fichiers . txt dans le répertoire
documents.

Exercice sur le module datetime

Partie 1: Théorie

1. Définitions:
o Que signifie "epoch" en informatique? Quel est I'epoch UNIX?
o Qu'est-ce que UTC et quelle est sa différence par rapport aux fuseaux
horaires?
o Qu'est-ce qu'une date "naive" et une date "aware" en termes de fuseaux
horaires?
2. Questions:
o Quelles sont les classes principales dans le module datetime et a quoi
servent-elles?
o Quelle est la norme ISO 8601 et pourquoi est-elle importante pour le
formatage des dates?

Partie 2: Pratique

1. Création de dates:
o Créez une instance de date représentant le 1er janvier 2024.
o Récupérez la date d'aujourd'hui et affichez-la.
2. Manipulation des temps:
o Créez une instance de time représentant 14h30 et 45 secondes.
o Reécupérez I'heure actuelle et affichez les heures, minutes et secondes.
3. Conversion de chaines en dates:
o Convertissez la chaine "2024-10-14" en un objet date a l'aide de la méthode
appropriée.
o Essayez de convertir la chaine "31-12-2024" (au format DD-MM-YYYY).
Affichez 'objet résultant.
4. Gestion des fuseaux horaires:
o Créez un objet datetime pour I'heure actuelle a Paris.
o Créez un objet datetime pour I'heure actuelle a Tokyo et affichez les deux.
5. Calcul de deltas:
o Calculez la date qui sera 45 jours aprés aujourd'hui et affichez-la.
o Créez une date représentant le 1er février 2024, puis ajoutez 2 mois a cette
date.
6. Différence entre deux dates:
o Créez deux objets datetime pour le 1er mars 2020 et le 10 mars 2020 a
15h00 dans le fuseau horaire de Montréal.
o Calculez et affichez le nombre de jours entre ces deux dates, en tenant
compte du fuseau horaire.

Partie 3: Questions de réflexion

1. En utilisant les concepts de timedelta, comment pourriez-vous implémenter un
systéme qui envoie un rappel par e-mail 3 jours avant un événement ?

2. Pourquoi est-il important de travailler avec des objets datetime aware lors de la
manipulation de dates et heures dans des applications internationales ?

Exercice : Traitement de Texte avec des Expressions Réguliéres

Vous étes chargé de développer un petit script qui analyse un texte et effectue les taches
suivantes :

1. Recherche d'un Mot :

o Trouvez la premiére occurrence du mot "chat" dans la chaine donnée.
2. Validation du Début de la Chaine :

o Vérifiez si la chaine commence par le mot "Python".
3. Extraction de Nombres :

o Récupérez tous les nombres présents dans la chaine suivante : "I1 y a 3
pommes et 2 oranges.".

4. Extraction de Mots en Majuscules :

o Trouvez tous les mots qui commencent par une majuscule dans la chaine :

"Ceci Est Un Test.".
5. Remplacement de Nombres :

o Remplacez tous les nombres dans la chaine suivante par le mot "beaucoup" :

"I1 fait 25 degrés aujourd'hui.".
6. Remplacement de Voyelles :

o Remplacez toutes les voyelles dans la chaine suivante par des 'X':

"Bonjour le monde!".
7. Validation de Mot de Passe :

o Vérifiez si le mot de passe suivant est valide. Un mot de passe est valide s'il
contient au moins une majuscule, une minuscule, un chiffre, et a une
longueur d'au moins 8 caractéres. Testez le mot de passe :
"MonMotdepasse123”.

Exercice : Gestion d'un systéme de réservation de jeux vidéo (fonctions,
args, kwargs, tests)

Vous devez développer un systéme de réservation pour un magasin de jeux video. Le
systéme doit inclure les fonctionnalités suivantes :

1. Ajouter un jeu : Créez une fonction ajouter_jeu(liste_de_jeux, *jeux,
**options) qui permet d'ajouter un ou plusieurs jeux a une liste. Les jeux doivent
étre ajoutés sous forme de chaines de caractéres. Les options doivent inclure des
informations telles que genre, plateforme, et prix.

Afficher les jeux : Créez une fonction afficher_jeux(liste_de_jeux) qui
affiche tous les jeux disponibles dans le magasin avec leurs détails.

Rechercher un jeu : Créez une fonction rechercher_jeu(liste_de_jeux,
nom_jeu) qui retourne un message indiquant si un jeu est disponible ou non.
Réserver un jeu : Créez une fonction reserver_jeu(liste_de_jeux,
nom_jeu, nom_client) qui permet de réserver un jeu pour un client. Sile jeu
n'est pas disponible, un message doit étre affiché.

Tester les fonctionnalités : Ecrivez des tests pour vérifier le bon fonctionnement de
vos fonctions. Assurez-vous de tester les cas de succés et d'erreur.

